Full network analysis.

Eugeniy E. Mikhailov

William © Mary

CHARTERED 1693

Lecture 02

Kirchhoff's Laws

Kirchhoff's Current Law

The algebraic sum of currents entering and exiting a node equals zero
Convention (quite arbitrary): currents going into the nodes are positive, the ones which go out of the node are negative.

Kirchhoff's Voltage Law

The algebraic sum of all voltage changes (aka voltage drops) in a loop equals zero

Notes:

- chose a direction along which you travel a network. If you go over a resistor and current runs the same way then voltage change is negative, otherwise its positive.
- If you go over a voltage source from the negative terminal to the positive terminal the voltage change is positive, otherwise negative.

Example

our goal is to find I_{1}, l_{2}, and I_{3} We chose $V_{A}=0$ for node A. It is our reference/grounded node

$$
\begin{equation*}
I_{1}-I_{2}-I_{3}=0 \tag{1}
\end{equation*}
$$

We need 2 more independent equations. For this we will go over 2 small loops as indicated by arrows.

$$
\begin{align*}
& V_{D C}+V_{C A}+V_{A D}=0 \tag{2}\\
& V_{A B}+V_{B C}+V_{C A}=0 \tag{3}
\end{align*}
$$

Notice:

$$
\begin{aligned}
& V_{A B}=+E_{1}, V_{B C}=-R_{2} \times I_{2}, V_{C A}=+R_{3} \times I_{3}, \\
& V_{D C}=+R_{1} \times I_{1}, V_{A D}=-E_{2} .
\end{aligned}
$$

Example (continued)

$$
\begin{aligned}
I_{1}-I_{2}-I_{3} & =0 \\
V_{D C}+V_{C A}+V_{A D} & =0 \\
V_{A B}+V_{B C}+V_{C A} & =0
\end{aligned} \quad \rightarrow \quad \begin{aligned}
& I_{1}-I_{2}-I_{3}=0 \\
& R_{1} \times I_{1}+R_{3} \times I_{3}-E_{2}=0 \\
& E_{1}-R_{2} \times I_{2}+R_{3} \times I_{3}=0
\end{aligned}
$$

Solving system of equation

So we need to find the unknowns I_{1}, I_{2}, and I_{3} from the system of equations

$$
\begin{array}{r}
I_{1}-I_{2}-I_{3}=0 \\
R_{1} \times I_{1}+R_{3} \times I_{3}-E_{2}=0 \\
E_{1}-R_{2} \times I_{2}+R_{3} \times I_{3}=0
\end{array}
$$

Let's reshape above equations to the canonical linear algebra form (move terms without unknown variables to the right)

$$
\begin{aligned}
I_{1}-I_{2}-I_{3} & =0 \\
R_{1} \times I_{1}+R_{3} \times I_{3} & =E_{2} \\
-R_{2} \times I_{2}+R_{3} \times I_{3} & =-E_{1}
\end{aligned} \quad\left[\begin{array}{ccc}
1 & -1 & -1 \\
R_{1} & 0 & R_{3} \\
0 & -R_{2} & R_{3}
\end{array}\right] \times\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
E_{2} \\
-E_{1}
\end{array}\right]
$$

Equations form
Matrix form

Computer assisted symbolic solvers: WolframAlpha (Mathematica)

$$
\begin{array}{r}
I_{1}-I_{2}-I_{3}=0 \\
R_{1} \times I_{1}+R_{3} \times I_{3}-E_{2}=0 \\
E_{1}-R_{2} \times I_{2}+R_{3} \times I_{3}=0
\end{array}
$$

With WolframAlpha we can input

the results can be seen by following WolframAlpha link, which gives solution

$$
\begin{aligned}
& I_{1}=\left(E_{1} R_{3}+E_{2}\left(R_{2}+R_{3}\right)\right) /\left(R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)\right) \\
& I_{2}=\left(E_{2} R_{3}+E_{1}\left(R_{1}+R_{3}\right)\right) /\left(R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)\right) \\
& I_{3}=\left(E_{2} R_{2}-E_{1} R_{1}\right) /\left(R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)\right)
\end{aligned}
$$

Computer assisted symbolic solvers: Matlab

I would not recommend to use Matlab as symbolic solver, but it can be done

```
>> syms I_1 I_2 I_3 E_1 E_2 R_1 R_2 R_3; % declare symbols
>> S = solve( [ I_1- I_2 - I_3 == 0,
    R_1*I_1 + R_3*I_3 - \overline{E_2 == 0,}
    E_1 - R_2*I_2 + R_3*I_3 == 0],
        [I_1, I_2, I_3]);
>> S.I_1
ans=(E-1*R_3 + E_2*R_2 + E_2*R_3)/(R_1*R_2 + R_1*R_3 + R_2*R_3)
>> S.I_2
ans=(E-1*R_1 + E_1*R_3 + E_2*R_3)/(R_1*R_2 + R_1*R_3 + R_2*R_3)
>> S.I_3
ans=-(E_1*R_1 - E_2*R_2)/(R_1*R_2 + R_1*R_3 + R_2*R_3)
```


Linear algebra solution for system of equatons

Let's look at the Matrix form

$$
\left[\begin{array}{ccc}
1 & -1 & -1 \\
R_{1} & 0 & R_{3} \\
0 & -R_{2} & R_{3}
\end{array}\right] \times\left[\begin{array}{l}
l_{1} \\
l_{2} \\
l_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
E_{2} \\
-E_{1}
\end{array}\right]
$$

Short notation $A \times I=B$, where I is a vector of unknown currents. Currents can be found as $I=\operatorname{inv}(A) * B$

Computer assisted numerical solvers: Matlab

Matlab is better suited for a numerical solutions, we will lose a general solution but a specific one is easy. In Matlab this is done as

```
>> R_1 = 10; R_2= 5; R_3= 15; E_1=10; E_2=15;
A =
    1
>> B = [ 0; E_2; -E_1]
B =
    0
    15
    -10
>> l=inv (A)*B
| =
    1.7143
    1.8571
    -0.1429
```

Note that $I_{3}=-0.1429$, i.e. it ends up negative. No need to worry, this means that direction of I_{3} is opposite to the one which we selected in our schematic.

Computer assisted symbolic solvers: Maple

$$
\begin{aligned}
& \text { solve }(\{I I-I 2-I 3=0, E 1-R 2 \cdot I 2+R 3 \cdot I 3=0, R I \cdot I I+R 3 \cdot I 3-E 2=0\},[I I, I 2, I 3]) \\
& \qquad\left[\left[I 1=\frac{R 3 E 1+R 3 E 2+R 2 E 2}{R 3 R 1+R 1 R 2+R 3 R 2}, I 2=\frac{R 3 E I+R 3 E 2+R 1 E 1}{R 3 R 1+R 1 R 2+R 3 R 2}, I 3=-\frac{R I E 1-R 2 E 2}{R 3 R 1+R 1 R 2+R 3 R 2}\right]\right]
\end{aligned}
$$

Thévenin's and Norton's equivalent circuit theorems

Any combination of voltage sources, current sources and resistors with two terminals is electrically equivalent

Thévenin's theorem

to a single voltage source $V_{T H}$ and a single series resistor $R_{T H}$ connected in series.

Norton's theorem

to a single current source I_{N} and a single series resistor R_{N} connected in parallel.

Note above circuits are equivalent to each other when

$$
R_{T H}=R_{N} \text { and } I_{N}=V_{T H} / R_{T H}
$$

