# Full network analysis.

### Eugeniy E. Mikhailov



Lecture 02

Eugeniy Mikhailov (W&M)

**Electronics 1** 

# Kirchhoff's Laws

### Kirchhoff's Current Law

The algebraic sum of currents entering and exiting a node equals zero

Convention (quite arbitrary): currents going into the nodes are positive, the ones which go out of the node are negative.

### Kirchhoff's Voltage Law

The algebraic sum of all voltage changes (aka voltage drops) in a loop equals zero

Notes:

- chose a direction along which you travel a network. If you go over a resistor and current runs the same way then voltage change is negative, otherwise its positive.
- If you go over a voltage source from the negative terminal to the positive terminal the voltage change is positive, otherwise negative.

# Example



our goal is to find  $I_1$ ,  $I_2$ , and  $I_3$ We chose  $V_A = 0$  for node A. It is our reference/grounded node

$$I_1 - I_2 - I_3 = 0$$
 (1)

We need 2 more independent equations.

For this we will go over 2 small loops as indicated by arrows.

$$V_{DC} + V_{CA} + V_{AD} = 0$$
 (2)

$$V_{AB}+V_{BC}+V_{CA}=0 \qquad (3)$$

Notice:

$$V_{AB} = +E_1, V_{BC} = -R_2 \times I_2, V_{CA} = +R_3 \times I_3, V_{DC} = +R_1 \times I_1, V_{AD} = -E_2.$$

### Example (continued)



$$\begin{split} & l_1 - l_2 - l_3 = 0 & l_1 - l_2 - l_3 = 0 \\ & V_{DC} + V_{CA} + V_{AD} = 0 & \rightarrow & R_1 \times l_1 + R_3 \times l_3 - E_2 = 0 \\ & V_{AB} + V_{BC} + V_{CA} = 0 & E_1 - R_2 \times l_2 + R_3 \times l_3 = 0 \end{split}$$

<ロト < 回 > < 回 > < 回 >

# Solving system of equation

So we need to find the unknowns  $I_1$ ,  $I_2$ , and  $I_3$  from the system of equations

$$l_1 - l_2 - l_3 = 0$$
  

$$R_1 \times l_1 + R_3 \times l_3 - E_2 = 0$$
  

$$E_1 - R_2 \times l_2 + R_3 \times l_3 = 0$$

Let's reshape above equations to the canonical linear algebra form (move terms without unknown variables to the right)

$$\begin{matrix} I_1 - I_2 - I_3 = 0 \\ R_1 \times I_1 + R_3 \times I_3 = E_2 \\ -R_2 \times I_2 + R_3 \times I_3 = -E_1 \end{matrix} \qquad \begin{bmatrix} 1 & -1 & -1 \\ R_1 & 0 & R_3 \\ 0 & -R_2 & R_3 \end{bmatrix} \times \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ E_2 \\ -E_1 \end{bmatrix}$$

Matrix form

Equations form

# Computer assisted symbolic solvers: WolframAlpha (Mathematica)

$$\begin{split} & l_1 - l_2 - l_3 = 0 \\ & R_1 \times l_1 + R_3 \times l_3 - E_2 = 0 \\ & E_1 - R_2 \times l_2 + R_3 \times l_3 = 0 \end{split}$$

With WolframAlpha we can input

Solve[  $\{ \lfloor 1 - \rfloor_2 - \rfloor_3 == 0, R_1*l_1 + R_3*l_3 - E_2 == 0, E_1 - R_2*l_2 + R_3*l_3 == 0 \}, \{ \lfloor 1 , \rfloor_2, \rfloor_3 \}$ 

the results can be seen by following **WolframAlpha link**, which gives solution

$$I_{1} = (E_{1}R_{3} + E_{2}(R_{2} + R_{3}))/(R_{2}R_{3} + R_{1}(R_{2} + R_{3}))$$

$$I_{2} = (E_{2}R_{3} + E_{1}(R_{1} + R_{3}))/(R_{2}R_{3} + R_{1}(R_{2} + R_{3}))$$

$$I_{3} = (E_{2}R_{2} - E_{1}R_{1})/(R_{2}R_{3} + R_{1}(R_{2} + R_{3}))$$

Eugeniy Mikhailov (W&M)

# I would not recommend to use Matlab as symbolic solver, but it can be done

イロト イポト イヨト イヨ

Let's look at the Matrix form

$$\begin{bmatrix} 1 & -1 & -1 \\ R_1 & 0 & R_3 \\ 0 & -R_2 & R_3 \end{bmatrix} \times \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 0 \\ E_2 \\ -E_1 \end{bmatrix}$$

Short notation  $A \times I = B$ , where *I* is a vector of unknown currents. Currents can be found as I = inv(A) \* B

## Computer assisted numerical solvers: Matlab

Matlab is better suited for a numerical solutions, we will lose a general solution but a specific one is easy. In Matlab this is done as

```
>> R 1 = 10; R 2= 5; R 3= 15; E 1=10; E 2=15;
>> A = [ 1 -1 -1; R 1 0 R 3; 0 - R 2 R 2]
A =
     1
          -1 -1
       0 15
    10
     ٥
          _5
               5
>> B = [ 0: E 2: -E 1]
B =
     0
   15
   -10
>> |=inv(A)*B
1 =
    1.7143
   1 8571
   -0.1429
```

Note that  $I_3 = -0.1429$ , i.e. it ends up negative. No need to worry, this means that direction of  $I_3$  is opposite to the one which we selected in our schematic.

イロト イポト イヨト イヨト

### Computer assisted symbolic solvers: Maple

 $solve(\{II - I2 - I3 = 0, EI - R2 \cdot I2 + R3 \cdot I3 = 0, RI \cdot II + R3 \cdot I3 - E2 = 0\}, [II, I2, I3])$   $\left[ \left[ II = \frac{R3 EI + R3 E2 + R2 E2}{R3 RI + RI R2 + R3 R2}, I2 = \frac{R3 EI + R3 E2 + RI EI}{R3 RI + RI R2 + R3 R2}, I3 = -\frac{RI EI - R2 E2}{R3 RI + RI R2 + R3 R2} \right] \right]$  (1)

イロト イポト イヨト イヨト

# Thévenin's and Norton's equivalent circuit theorems

Any combination of voltage sources, current sources and resistors with two terminals is electrically equivalent

#### Thévenin's theorem

to a single voltage source  $V_{TH}$ and a single series resistor  $R_{TH}$ connected in series.

### Norton's theorem

to a single current source  $I_N$ and a single series resistor  $R_N$ connected in parallel.





Note above circuits are equivalent to each other when

$$R_{TH} = R_N$$
 and  $I_N = V_{TH}/R_{TH}$