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1 Absolute and relative uncertainties

Main goal of any experiment is to measure some physical quantity. The measurements can
be direct or indirect. In a direct measurement one measures directly the value of interest.
The examples of direct measurements are the measurements of object length with a ruler, or
the measurements of electric current with an amperemeter. Much more often measurements
are indirect ; in this case the main value is calculated based on the direct measurements of
supplementary values: for example, an unknown resistance may be calculated through the
measurement of a current and a voltage drop across it, or the volume of the cube is calculated
by multiplying the measured lengths of its sides.

The result of any measurement (both direct and indirect) gives only an approximate
value of the actual physical quantity. How accurate a measurement is depends on several
parameters, such as, for example, accuracy of measuring devices. Indeed, a caliper provides
much more accurate measurements than a regular ruler. Since a result of any measurement
is only approximate, any calculation based on this approximate measured value is also ap-
proximate. That is why for any direct or indirect measurement it is necessary to include the
value of an absolute uncertainty. For example:

L = (24.7± .4)cm (1)

For most cases an absolute uncertainty is rounded up to only one significant figure. The only
exception is when this figure is ”1” - in this case the second significant figure is allowed1.
Also, the number of significant figures in a measured value notation is limited by its absolute
uncertainty. The value must be rounded up such that the last significant figure is in the
same decimal register as the last significant figure of the absolute uncertainty. There is also
a concise notation, so 12.341353(13) is equivalent to (12.341353± 0.000013).

Sometimes a physical value may be written without absolute uncertainty - in this case
the absolute uncertainty is implicitly assumed to be ±1 in the last significant figure. For
example, the is a difference between the notation 7000 m and 7×104 m: in the first case the
measured length has 4 significant figures, so it is defined with accuracy 1 m - (7000±1) m; in
the second case there is only one significant figure, so the length is (7±1)×104 m. However,

1There are exceptions from this rule when the uncertainty is evaluated with a great care (which is an art
by itself). For example, mass of the electron is reported as 9.1093837015(28)× 10−31kg
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this way of writing leaves a question: was error reported or not. So it is good practice to
explicitly report the uncertainty.

Some examples, of uncertainty reports:
Incorrect Why incorrect Correct
3.45± 0.5 m significant figures beyond precision 3.5± 0.5 m
75.742± 0.12 kg significant figures beyond precision 75.74± 0.12 kg
8.8± 0.01 mm not enough significant figures in value 8.80± 0.01 mm
1244.3± 62.3 K uncertainty is incorrectly rounded (124± 6)× 101 K
2502± 40 nm trailing zero in ±40 is insignificant (250± 4)× 101 nm or

(25.0± 0.4)× 102 nm
Notice that absolute uncertainty has the same unit as a measured value. One can also de-

fine a relative uncertainty- a ratio between the absolute uncertainty and the measured value.
A relative uncertainty is dimensionless, and it shows a relative accuracy of the measured
result (or per cent error).

Bottom line: any physical value is measured with uncertainty; this uncertainty must be
defined for any physical value measured or calculated in any experiment.

2 How to find an absolute uncertainty of a measured

physical value

Let’s first discuss an uncertainty of a direct measurement (i.e. when the physical value is
measured directly). In this case there are two general classes of experimental errors: system-
atic and random. The boundary between these two is not well-defined. There are certainly
some experimental uncertainties which are not either fully random or fully systematic.

Systematic uncertainties/errors: these errors appear and stay constant for any rep-
etition of the experiment. A classic example of a systematic uncertainty is an uncalibrated
measuring instrument: it does not matter how many times the experiment is repeated - the
results will be consistently incorrect. The only way to correct a systematic error is to identify
it and compensate for it in the measured results. For example, if the readings of a voltmeter
are known to be 20% below the actual value, it is possible to account for that by increasing
the measured values by 20%. However, accounting for a systematic error means guessing of
its effect, so generally it is much better to redesign an experiments to avoid any systematic
errors.

Random uncertainties/errors: these errors produce scatter in measured value, i.e.
the results of a series of the experiments are somewhat different from one another. This
variation may be due to some variations in experimental conditions, fluctuations in the
measuring device performance, or human error. In electronic instruments it may be due
to noise in electronic circuits. Random uncertainties may be reduced by repeating the
experiments many times.

There are three main categories of random errors: Obvious errors or outliers are the
results which are noticeably inconsistent with the rest of the data set. Mathematically we
can suspect that a particular point is an outlier if omitting it reduces the standard deviation
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of the whole set by a lot - a factor of 3 or more. In this case it is wise not to include this
point in the data analysis, providing that the number of remaining points is still sufficient.

However, it is very bad practice to just through away data points. If you suspect that
there is an error in one measurements, it is the best to go back, re-examine the situation
and find the source of error.

Instrumental errors come from a limited resolution of a measuring apparatus. Any
reading is limited to a certain number of significant digits. This limit is usually obvious for
analog devices with scales and divisions. Although there is no one set rule on how to define
the instrumental uncertainty, the rule of thumb is that it is ± half of the smaller division.
For example, a mass of a brick measured using a bathroom scale (the smallest division is
1 lb) is (12.5± 0.5) lb.

Smallest division = 0.001in
Caliper reading is 0.5105 ±0.0005 in

Smallest division = 1 [unit]
Dial reading is 54.7 ±0.5 [units]

Figure 1: Examples of reading analog scales with instrumental uncertainties.

For digital read-outs it is safe to quote ±1 in the least significant digit. For example, the
correct way to write down a time measured using a digital stop watch (showing minutes and
seconds) will be (36± 1) s.

If only one measurement is made, the precision of the measured value is limited by
instrumental uncertainty, which must be quoted. Amazingly, if the same value measured
many times, and the source of fluctuations is completely random, then it is possible to
measure the average for the set with greater precision than the instrument allows.

Statistical errors become important when an experiment is repeated many time in
nominally identical conditions, but the outcomes vary within some range around some aver-
age value. In this case the uncertainty of the average is calculated based on the statistical
properties of the measured data set.

Let’s suppose that some experiment was repeated N times, and N different outcomes
for a value of interest x were recorded to the lab book as {xi}. Then it is logical to assume
that a true value of x should be close to the calculated average of the results of repeated
measurements {xi}:

xave =

∑N
i=1 xi
N

(2)

We also need to determine the uncertainty of xave; we expect that the true value of the
measured parameter lies within the range [xave −∆x;xave + ∆x].
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The most accurate way to find ∆x depends of the size N of the data set. We will have
to distinguish two important cases: small data sets (number of data points is less than 5-10)
and large data sets(number of data points is greater than 10-20).

Small data set
Essential quality of a small data set is that we cannot extract any true statistical infor-

mation about the set because there are too few points. In this case we can only assume
that each next measurement will fall in the range of the existing data spread; thus, the
uncertainty of each individual measurement is

σ =
xmax − xmix

2
(3)

However, the more measurements are made, the more precise the average value becomes,
even though the uncertainty for each individual measurement stays constant. A properly
defined uncertainty of the average value is called a standard error of the mean (SEM):

∆xave =
σ√
N

=
xmax − xmix

2
√
N

(4)

Large data set
As the number of measurements increases, the range of the data spread may reach some

stable value. However, larger number of points allows to apply more rigorous statistical
analysis. It is known that for any data set with finite random fluctuations the probability
distribution of outcomes approaches a Gaussian bell-shaped dependence as the number of
points increases. The top of the bell gives the average value of the data set as defined in
Eq.(2). The standard deviation determines the width of the probability distribution:

σN =

√∑N
i=1(xi − xave)2

(N − 1)
(5)

Physically the standard deviation σN gives the uncertainty for each measurement, i.e. we
can assume that the next measurement would fall within one standard deviation from the
calculated average value. Similarly, the uncertainly of the mean value SEM decreases as the
number of data points increases:

∆xave =
σN√
N

=

√∑N
i=1(xi − xave)2
(N − 1)N

(6)

Technically the above method can be applied for small sets as well if the additional
corrections (Student’s coefficients) are added to the expression for the uncertainty.

No matter what method was used to analyze a data set, the final result of the measurement
should be reported as:

xave ±∆xave,

where xave is the average value of the set, and ∆xave is the standard error of the mean,
rounded up to one significant figure.
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3 How to find an absolute uncertainty of a calculated

physical value

Let me first introduce the general treatment of the propagation of errors, and then do a few
examples.

Single-variable function
How to estimate the uncertainty ∆Y of a calculated value Y = f(x) if x is measured

with uncertainty ∆x? If the value of x is known to be within the range [x − ∆x;x + ∆x],
and f(x) is monotonous in that region, than the expected range of values of Y is:

∆Y =
1

2
|f(x+ ∆x)− f(x−∆x)| ≈

∣∣∣∣ dfdx
∣∣∣∣∆x (7)

Using this rule, it is easy to figure out the uncertainty for some common cases:

1. Multiplication to the constant A:

Y = Ax; ∆Y = A∆x;

2. Power dependence:

Y = xn; ∆Y =
∣∣nxn−1

∣∣∆x = Y · n∆x

x
;

Multi-variable function
Very often in data analysis there is a need to calculate a value Y and uncertainty of

the value ∆Y that depends on several experimental parameters x1, x2, . . . . In this case the
uncertainties of all these parameters have to be taken into account. An important assumption
we have to make is that any fluctuations in these parameters are independent. In this case
we can generalize Eq.(7) to the case of several variables:

∆Y =

√
(
∂f

∂x1
∆x1)2 + (

∂f

∂x2
∆x2)2 + . . . (8)

Although this expression looks cumbersome, it is very handy for finding expressions for
known physical formulae:

1. Addition and subtraction:

Y = x1 ± x2; ∆Y =
√

∆x21 + ∆x22;

2. Power dependence:

Y = x1 × x2; ∆Y =
√
x22∆x

2
1 + x21∆x

2
2

or, changing it in more traditional form:

∆Y = Y

√
(
∆x1
x1

)2 + (
∆x2
x2

)2
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It is also easy to show that the same expression is true for division:

Y =
x1
x2

; , ∆Y = Y

√
(
∆x1
x1

)2 + (
∆x2
x2

)2

The equations above are sufficient for the majority of the physics problems. Let me just
throw a few examples to illustrate how the equations for uncertainties work:

• Temperature difference:

Tdif = Tfin − Tin; ∆Tdif =
√

(∆Tfin)2 + (∆Tin)2 =
√

2∆T

if the uncertainties ∆Tfin = ∆Tin = ∆T .

• Speed of light pulse:

v = d/t; ∆v = v

√
(
∆d

d
)2 + (

∆t

t
)2

• Volume of a cylinder:

V = πr2h; ∆V = V

√
(
∆h

h
)2 + (2

∆r

r
)2

4 Comparison of two values with uncertainties

In common life we always use our intuition when talking about somethings being “far” or
“close” to each other. When it comes to comparing the results of measurements, only the
uncertainty determines if two values are close (or identical) or not.

Comparison of the experimental result with a known value
Let’s first consider the case when you want to compare the result of your experiment

with some known and accepted value. For example, there is a postulated value for the speed
of light c = 299 792 458 m/s, or very precisely measured value for the Planks constant
h̄ = 1.054 571 628(53) × 10−34 J·c. In both examples the uncertainty for the reference
value either does not exist, or is much smaller than the uncertainty of the experimental
measurement.

Then in order to agree with each other the difference between a reference value xtrue and
am experimental value xexp should be less than the experimental uncertainty ∆x, or xexp −
∆x ≤ xtrue ≤ xexp + ∆x. If the separation between two values is larger that the uncertainty
- they disagree, probably due to some undetected systematic errors in the measurement
procedure.

Notice that it does not matter how close two values look! For example, a measures speed
of light of (2.995 ± 0.002) × 108 m/s does not agree with its reference value, even though
it looks very close. At the same time, a measurement of (3.01 ± 0.02) × 108 m/s is within
its uncertainty range from the true value, even though it is farther from it. This just means
that the second experiment is much less accurate!
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In order to further quantify the measurement precision, one should find the percent
deviation from the reference value. This will tell how close the two values are. You can find
the percent deviation from theory as follows:

% deviation =
|xexp − xref |

xref
× 100% (9)

Comparison of two measured quantities with uncertainties
Suppose that the same physical parameter x has been measured using two different

methods, and the results of both experiments (with their absolute uncertainties) are x1±∆x1
and x2 ± ∆x2. We can say that these two independent measurements agree with each
other if their uncertainty intervals intercept. For example, two measured values of the
acceleration due to gravity g1 = 9.83 ± 0.04 m/s2 and g1 = 9.75 ± 0.07 m/s2 agrees within
experimental uncertainties - since their uncertainty intervals overlap: 9.79 ≤ g1 ≤ 9.87 m/s2

and 9.68 ≤ g2 ≤ 9.82 m/s2.
In case of two experimental values one cannot say which one is more accurate, and the

expression for the percent deviation is slightly different from Eq. 9:

% deviation =
|x1 − x2|

x1+x2

2

× 100% (10)

5 Further reading

This write-up gave only the very basic introduction to the methods of error analysis and un-
certainty calculations. If you see yourself doing research in science (not necessarily physics!)
or engineering, you may find it wise to invest into a good book on data analysis, such as “An
Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements” by
John R. Taylor.
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