Name:

Homework 8

Total of 4 problems.

Problem 1 (5 points)

Using superposition principle, derive the output of the shown differential amplifier (V_{out}) as function of input potentials V_{in1} , V_{in2} , and resistors used in the circuit diagram.

Problem 2 (5 points)

For the differential amplifier depicted above. Find values of resistors R_1 , R_2 , R_3 , and R_4 which provide $V_{out} = 10 \times (V_{in2} - V_{in1})$. Express, your answers as ratios of resistors values relative to R_1

Using superposition principle, derive the output of the shown above "mixed" amplifier (V_{out}) as function of input potentials V_{in1} , V_{in2} , and resistors used in the circuit diagram. Note: the non-inverting input contribution is trickier than you might think. How does R_1 and R_2 combo look when they are both connected to the reference?

Problem 4 (5 points)

Design a circuit, which will perform the following math operation on its inputs V_1 , V_2 , and V_3 : $V_{out} = -0.1V_1 + 10V_2 - 20V_3$

It is OK to assign actual numbers to your resistors, but do your best to keep majority of them in the range from $k\Omega$ to $M\Omega$.