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Abstract
In this experiment, we used an electron gun to measure the diffraction from graphite
and calculate calculate the inter-atomic layer spacing. The best spacing from the inner
diffraction ring was dip = 0.135 + 0.007 nm and the best spacing from the outer ring -
was d1; = 0.235 + 0.012 nm. We rejected both calculations as the literature values
are outside the uncertainty. We attribute the uncertainty to measurement error in the
procedure to measure arc length and to errors in the voltage readings.

1 Theory overview

The main physical phenomenon at play is diffraction from the wave nature of electrons. An

electron wave passing through the first layer in the graphite and reflecting off the second has

the same angle of reflection as one reflecting off the first layer, as shown in Figure 1.1 of the

lab manual. The two waves then interfere, causing a concentric ring pattern on the screen.

The de Broglie wavelength of the electron, A = h/p where momentum p is, according to [1],
1 p’

“mvt = = eV,
5 eV S, e (1)

where V, is the voltage accelerating the electron. This can be combined with Bragg’s Law
governing constructive interference

nA = 2dsind (2)
where n = 0,1, 2... for each order diffraction. 8 is the angle of deflection, calculated by
1 . (R . s
O(R,L,s) = 5 arcsin (Z sin (ﬁ)) (3)

where R is the radius of curvature of the screen, L is the distance between the screen and
target, and s is the arc length between edges of the circles. Thus, the dependence of interest
from reference [1] for the inter-atomic spacing seen with electron diffraction is given by

h
die,v,) = 4
(6,Va) 2s8in v/ 2em.V, )
where h is Planck’s constant, e is the electron charge, m, is the electron mass, and V, and
6 are defined above. The n becomes 1 and is left out because we are only focusing on the

spacing between the first layers, so we only need the first order diffraction.
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2 Experimental setup and procedures
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Figure 1: Internal diagram for Electron Diffraction apparatus. R = .064 m is the radius of
curvature of the screen. L = .130 m is the distance to the screen from the target.

We set up the electron diffraction apparatus, connected it to a power supply and turned
it on to warm up. First, we used a ruler to measure R and L on the apparatus. We adjusted
the voltage to find a lower and upper bound of V, for which the diffraction pattern is clearly
visible on the screen. Then, we wrapped receipt paper around the apparatus and used a
pencil to mark the edges of the inner and outer circles. We used a ruler to measure the arc
lengths marked off on the paper, with the outer markings corresponding to the outer ring
and the inner ones for the inner ring. Then, we repeated the procedure at eight voltages V,
within the range.

3 Experimental data and data analysis

Table 1: Average inter-atomic spacing between graphite layers
Atomic Plane (Ring) | < d > (nm) ¢ (nm)
dyp (Inner) 0.135 0.007
dy; (Outer) 0.235 0.012

The average spacings and standard deviations in Table 1 are calculated by using the
individual arc lengths to calculate the deflection with equation 3 and then using those angles
in equation 4 to find the spacings. Hence, the mean spacings with their respective statistical
uncertainties from Table 1 are d;o = 0.135 & 0.007 nm and d;; = 0.235 + 0.012 nm.




3.1 Error propagation

~ For determining error propagation, we used an error of §V, =150 V for the power supply,
mostly from fluctuations in and limitations on the built-in multimeter display. The angle
error for both circles was calculated with

§CO8 (%) . ﬁ )

8

64 =
4\/[,2 — R?sin?

o=
2R

as derived in Appendix A. The uncertainty in the arc length measurements, ds = +0.005m
comes from ruler limitations and issues projecting the spherical distance to a measurable
flat line. Using this, 66;4mer = 0.01 radians and 00suter = 0.006 radians. Thus, the error
propagation for the inter-atomic spacing is calculated by

Jd(Va,9)=de\/i(%)2+ (%9)2 (6)

as derived in Appendix B. Therefore, the equation gives uncertainties of §dy; = +0.001 nm
and ddjp = £0.002 nm, lessthan the standard deviation statistical error in both cases.

3.2 Graphical analysis
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Figure 2: The graph shows sin () plotted against 1/1/V, for the outer ring. The slope of
the best fit is ¢ and the vertical intercept is b. The vertical lines represent the standard
deviation in sin(f).

The line of best fit in the graph above has the equation sin§ = c\/—l‘—/: + b where

h 1
©= o ome  d (")
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Figure 3: The graph shows sin () plotted against 1/+/V, for the inner ring. The best fit
slope is ¢ and vertical intercept is b. The vertical lines show the standard deviation in sin(8).

which results in dyg = 0.461 nm and d;; = 0.512 nm. The uncertainty in these wvalues is
propagated through the equation as derived in Appendix C with the equation being

5d=d*§cf (8)

so that when we use the slope and uncertainty values from the graph, we get dd,o = 3-0.17 nm
and éd;; = £0.2 nm. These values are much higher because the graphs are more affected
than the averages by outliers. Both graphs show that lower voltages measurements were
smaller than expected and high voltage ones were larger than expected, flattening the line.
The intercepts on the graphs should be zero theoretically but are above that, and zero is
not within either uncertainty range. Both reflect systematic errors where the values for @ are
larger than expected across the board. This means that out measurements of the arc length
s for both rings were systematically larger than expected, an error likely stemming from the
procedure of wrapping receipt paper around the apparatus and marking it with pencils.

4 Conclusions

The arithmetically estimated inter-atomic spacings were dyp = 0.135 £ 0.007 nm and d;; =
0.235 £ 0.012 nm and the graphically estimated spacings were dyg = 0.46 &+ 0.17 nm and
di; = 0.5 0.2 nm. We reject both sets of calculations as the literature values are outside
the uncertainty range. The error in the measurement comes from flat projection error in the
arc length which propagated through the angle calculation to the spacing calculation and
the errors in the readings from the high voltage power supply.
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Appendices

A Derivation for Error Propagation in Equation 5

To find the error 6 in the angle we calculated from the orthodromic distance measured
on the apparatus, we need to use the partial derivatives of equation 3 in the general error
propagation formula

o8 06 06
2_ [ 99 )2 2 90 o 2 A VITRY:
(68)° = (BR) (6R)* + (BL) (6L)* + (83) (&s) (A.1)
The three partial derivatives for equation 3 are
a6 1 (s S°osizk
3R = TreTen * | sin (ﬁ) - __2}2__)) (A.2)
2L\/1 -—
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aL 2L\/1 . R2Si!f2(rlk) L
% 1 . cos ('23_-2) (A4)
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which can be squared and input into the formula, combining common denominators as follows

. (sin 5 ~ *e \2(6R)2 + (R )2 (s + () 2(ss)?
2 5in? =
(2 IJ1— RTZ&) 2

Taking the square root of both sides and simplifying to get fractional uncertainties gives the
final error propagation formula,

(on ) () (e 3) () + ) 2

. 9
2\/L2—R2sm 2

(A.5)

80(s, R, L) = \/

(A.6)
Assessing the orders-of-magnitude of each fractional uncertainty, we use R = L = +0.001m
based on the limitations of the ruler and és = +0.005m from ruler limitations and issues
projecting the spherical distance to a measurable flat line, as mentioned in the Error Prop-
agation subsection of the report. Therefore, 'JEE = Q00Im -, g 507 'STL = % ~= 0.8%. For

0.064m

the arc lengths, we calculate the fractional error for both the inner and outer ring measure-

ments so %ﬁit = 200m ~ 17.2% and %ﬁt = 20Wm ~ 10%. Since the magnitude of the
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uncertainty in the arc length in multiple times greater than the uncertainties in the other
measurements, the error propagation formula can simplify to

56 = seos (i) £ (A7)

4y/L — Resin? 2 °

as is shown in Equation 5.

B Derivation for Error Propagation in Equation 6

To find the error éd in the interatomic spacing in the graphite, we use the partial derivatives
of equation 4 in the general error propagation formula

ad od
2 2 2
(6d)* = (3%) (6Vo)* + (39) (66)? (B.1)
The two partial derivatives from equation 4 are
od h 1
oV, ~ 2sin 0/ 2em, * ._21/3 (B2)
od

h
. 0 )
3 oA * — csc 6 cot (B.3)

which are squared, input into the general formula, and simplified into the following

h? 1/4V, cos® ¢
5 = a 12 (59 2 .
(6a)* = 8em,V, sin® 0 (4 ( V. ) + sin? 9( ) ) (B.4)

Taking the square root of both sides and recognizing that the common term is equal to

equation 4 returns
8V, &6 .
s1=a (e (L) ®3

Since @ is very small, we can approximate tan 8 ~ @ such that we get fractional uncertainties
in the final error propagation formula

6d = d\/4(5;:) + (%2)2 (B.6)

We can look at the orders-of-magnitude of the uncertainties for the two different spacings

we are calculating. In both cases, ‘5—“,—? = o = 5.0%. For the inner ring, 6y = 0.06 rad

so $1e = 381 = 16.7% and for the outer ring, 6;; = 0.09 rad so P = 9905 — 6.7%. Since

neither uncertainties dominates, Equation 6 is Equation B.6.




C Derivation for Error Propagation in Equation 6

To calculate the error propagation through using the slope to calculate d with equation 7,
we first solve the equation for d.

h 1
d= —=x*~- 1
24/ 2em, * c (C.1)
Using the general form for error propagation with partial derivatives gives
od
2_ (9% Y2,z \2
(607 = (327069 (€2)

The partial derivative of d with respect to c is

od h 1
ac  em. & (C.3)

Plugging this in and square rooting and simplifying gives an equation

h de
d= ——=% — C4
) 2¢cy/2em, * c (C4)
Recognizing that the first part of the equation is equal to the estimated d from the slope,
we get
d0d =d* % (C.5)

which is equal to equation 8 above.




