Homework 13

Prerequisites: Read chapter 16.1 - 16.3. Skip the rest but review the lecture notes. If you are the Earth scientist, you might enjoy discussion in 16.11.

Problem 1 (5 points):

In class, we proved that in fluids the speed of a wave is $c=\sqrt{B / \rho}$, where B is the bulk modulus. Prove that c has dimension of meter per second.

Problem 2 (5 points):

Plug correct values for the speed of sound in the air and recalculate c more precisely than it was done in class. Compare your result with the "official" value of $c=343 \mathrm{~m} / \mathrm{s}$.

Problem 3 (5 points):

Which of the following excitations go to the positive direction of the ' x ' axis and which ones go to the negative directions?

$$
\begin{gather*}
U(x, t)=g(c t-x) \tag{1}\\
U(x, t)=U_{o} \exp \left(-(x / 10-t)^{2}\right) \tag{2}\\
U(x, t)=\exp (i k x-i w t), \quad k>0, \quad w>0 \tag{3}
\end{gather*}
$$

What changes if ' k ' is a negative number in the above expression?

$$
\begin{equation*}
U(x, t)=\sin (x-t)+\cos (x+t) \tag{4}
\end{equation*}
$$

Problem 4 (5 points):

A string of length L with a linear mass density μ is suspended in the Earth gravitational field. To the lower end of the string a mass m is attached. Assume that acceleration due to gravity g is constant.
How long does it take for an excitation to travel from one end of the string to the other?
To do it, you need to calculate

$$
\begin{equation*}
t=\int_{0}^{L} \frac{d y}{c(y)} \tag{5}
\end{equation*}
$$

where 'y' is the position along the string.
Now consider a case when there is no attached mass to the end of the string. In this case, c is zero at the very bottom. So it should take infinite time to travel the very bottom part of the string. Yet, the overall time is still finite for $m=0$. Please explain.

