Homework 07

Prerequisites: Read chapter 9.

Problem 1 (3 points):

Show that

$$
\vec{A} \cdot(\vec{B} \times \vec{C}) \quad=\operatorname{det}(\vec{A}, \vec{B}, \vec{C})=\operatorname{det}\left(\begin{array}{l}
A_{x} A_{y} A_{z} \tag{1}\\
B_{x} B_{y} B_{z} \\
C_{x} C_{y} C_{z}
\end{array}\right)
$$

Problem 2 (3 points):
Using above show that

$$
\begin{equation*}
\vec{A} \cdot(\vec{B} \times \vec{C})=-\vec{C} \cdot(\vec{B} \times \vec{A}) \tag{2}
\end{equation*}
$$

Problem 3 (3 points):

Show that

$$
\begin{equation*}
\frac{\partial\left(\vec{r}^{2}\right)}{\partial \vec{r}}=2 \vec{r} \tag{3}
\end{equation*}
$$

Do it via components x, y, z expansion
Problem 4 (3 points):
Look at the equation 9.34 in the Taylor's book. Compare it to the $m \vec{a}$ expression for a non-inertial frame which derived in the class. Which two terms are missing in the book. Why? What are the assumptions?

