Homework 01

Prerequisites: Read chapter 8.

Problem 1 (4 points):

Prove that the reduced mass

$$
\begin{equation*}
\mu=\frac{m_{1} \times m_{2}}{m_{1}+m_{2}} \tag{1}
\end{equation*}
$$

is indeed smaller than either m_{1} or m_{2}.
Problem 2 (4 points):
Show that in the center of mass (CM) reference frame of a two-body system the total momentum is zero. Actually, this is true for multi-body system as well.

Problem 3 (4 points):

We have two bodies with known mass-ratio m_{2} / m_{1}.
The velocity of the first body has the following $\{x, y, z\}$ components in the CM reference frame $\left\{v_{1_{x}}, v_{1_{y}}, v_{1_{z}}\right\}$. Find the $\{x, y, z\}$ components of the second body velocity.

Problem 4 (8 points):

The expression for the potential energy of a two-body system is

$$
\begin{equation*}
U(r)=U_{0} \times\left(\frac{1}{\sin (r)}+r^{2}\right) \tag{2}
\end{equation*}
$$

Assume that masses m_{1} and m_{2} are known.
What is the magnitude of the force acting on the first body? At some point of time, the first body starts moving from the rest along the positive y -axis direction (in the CM reference frame). What is the direction of the force acting on the second body?
Can you make a statement that the second body was at rest prior the discussed point of time? Why is it so?

