
Sorting

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 28

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 1 / 18



Bubble sort method

Someone gives us a vector of unsorted numbers.
We want to obtain the vector sorted in ascending order.

Assign the IndexOfTheLastToCheck to be the
index of the vector end.

1 Compare the 2 consequent elements starting from
the beginning till we reach the
IndexOfTheLastToCheck.

2 If the left element is larger than the right one, we
swap these 2 elements.

3 Move to the next pair to the right, i.e., move to the
item 2.

Notice that at the end of the sweep, the index of the
last element to check holds the largest element.
So, the next sweep is shorter by one element.
I.e., the index of the last element to check should be
decreased by 1.

4 Decrease IndexOfTheLastToCheck by 1
5 If IndexOfTheLastToCheck > 1, repeat from the

second step.

x = [3,1,4,5,2]
the first sweep
x = [3̂,1,4,5,2] swap
x = [1,3,4,5,2] after swap
x = [1, 3̂,4,5,2] no swap
x = [1,3, 4̂,5,2] no swap
x = [1,3,4, 5̂,2] swap
x = [1,3,4,2,5] sweep is done
new sweep
x = [1̂,3,4,2,5] no swap
x = [1, 3̂,4,2,5] no swap
x = [1,3, 4̂,2,5] swap
x = [1,3,2,4,5] sweep is done
new sweep
x = [1̂,3,2,4,5] no swap
x = [1, 3̂,2,4,5] swap
x = [1,2,3,4,5] sweep is done
the last sweep
x = [1̂,2,3,4,5] no swap
x = [1,2,3,4,5] we are done

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 2 / 18



Bubble sort properties

The execution time of this algorithm is O(N2)

This is the worst of all working algorithms!
Never use it in real life!
However, it is quite intuitive and a very simple to program.
It does not require extra memory during the execution.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 3 / 18



Quick sort method

A much better, yet still simple algorithm.
We will discuss the recursive realization.
The name of our sorting function is qsort.

Choose a pivot point value
let’s choose the pivot at the middle of the vector
pivotIndex=floor(N/2)
pivotValue=x(pivotIndex)

Create two vectors which hold the lesser and larger than
pivotValue elements of the input vector.
Now, concatenate the result as
xs=[qsort(lesser), pivotValue, qsort(larger)]
The sorting is done.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 4 / 18



Quick sort summary

It is very easy to implement.
It is usually fast.
A typical execution time is O(N log2 N).
This is not guaranteed.

For certain input vectors the execution time could be as long as
O(N2).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 5 / 18



Heap

The heap is a structure where a parent element is larger or equal to its
children.

15

11 5

9 8

5 4 4 6

4 3

2

The top most element of a heap is called the root.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 6 / 18



Heap sorting method

1 Fill the heap from the input vector elements.
1 Take an element and place it at the bottom of the heap.
2 Sift-up (bubble up) this element.
3 Do the same with every following element.

2 Remove the root element, since it is the largest.
3 Rearrange the heap i.e. sift-down.

1 Take the last bottom element.
2 Place it at the root.
3 Check if parent is larger then children.

1 Find the largest child element.
2 If the largest child is larger then parent, swap them and repeat the

check in the sub heap of this child element.

4 Repeat step 2 until no elements are left in the heap.

The heap sorting complexity is O(N log2 N).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 7 / 18



Filling (sift-up) the heap

Step 1
Place a new element at the
bottom of the heap.

15

11 5

9 8

5 4 4 6

4 3

2

6

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 8 / 18



Filling (sift-up) the heap

Step 2
Check if the parent is larger
then the child. If so, swap
them and repeat the step 2.

15

11 5

9 8

5 4 4 6

4 3

2 6

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 9 / 18



Filling (sift-up) the heap

Step 2
Check if the parent is larger
then the child. If so, swap
them and repeat the step 2.

15

11 5

9 8

5 4 4 6

6 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 10 / 18



Filling (sift-up) the heap

Step 2
Check if the parent is larger
then the child. If so, swap
them and repeat the step 2.

15

11 6

9 8

5 4 4 6

5 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 11 / 18



Removing from the heap (sift-down) the heap

Step 1
Remove the root element.

15

11 6

9 8

5 4 4 6

5 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 12 / 18



Removing from the heap (sift-down) the heap

Step 2
Place the last element of the
heap to the root position.

11 6

9 8

5 4 4 6

5 3

2 4

15

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 13 / 18



Removing from the heap (sift-down) the heap

Step 3
Check if the parent is
smaller than the largest
child. If so, swap and repeat
the step 3, otherwise go to
the step 1. 11 6

9 8

5 4 4 6

5 3

2

15

4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 14 / 18



Removing from the heap (sift-down) the heap

Step 3
Check if the parent is
smaller than the largest
child. If so, swap and repeat
the step 3, otherwise go to
the step 1. 4 6

9 8

5 4 4 6

5 3

2

15

11

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 15 / 18



Removing from the heap (sift-down) the heap

The sequence repeats.

Step 1
Remove the root element

9 6

4 8

5 4 4 6

5 3

2

15

11

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 16 / 18



The vector heap representation

Heap nodes are numbered
consequently. These numbers
represent the nodes positions
in the vector (i.e., the linear
array).
Notice that the parent and its
children have a very simple
relationship

if a parent node index is i
the 1st child index is 2i
the 2nd child index is
2i+1

If we know a child index (i)
then

the parent index is
floor(i/2)

15

11 5

9 8

5 4 4 6

4 3

2

1

2 3

4 5 6 7

8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

15 11 5 9 8 4 3 5 4 4 6 2

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 17 / 18



Matlab built-ins ’issorted’ and ’sort’

An easy check if an array is sorted can be done with issorted which
returns true or false.

>> x=[1,2,3];
>> issorted(x)
ans = 1

issorted checks only for the ascending order, for example

>> x=[3,2,1];
>> issorted(x)
ans = 0
% Recall that '0' is equivalent of false in Matlab

Also, if you want to sort an array, the Matlab has the sort function to
do it.

>> sort([5,3,2])
ans = 2 3 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 28 18 / 18


	Bubble sort method
	Quick sort method
	Heap sorting method
	Heap

	The vector heap representation
	Matlab built ins 'issorted' adn 'sort'

