Fourier transform

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 25

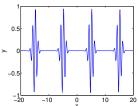
Eugeniy Mikhallov (W&M)

Practical Computing

Lecture 25 1/9

Fourier series

Any periodic single value function with a finite number of discontinuities, and for which $\int_0^T |f(t)| dt$ is finite, can be presented as



$$y(t) = \frac{a_0}{2} + \sum_{1}^{\infty} (a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t))$$

T is the period, i.e., y(t) = y(t+T) $\omega_1 = 2\pi/T$ is the fundamental frequency

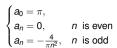
$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = rac{2}{T} \int_0^T dt \begin{pmatrix} \cos(n\omega_1 t) \\ \sin(n\omega_1 t) \end{pmatrix} y(t)$$

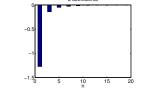
At a discontinuity, the series approaches the mid point

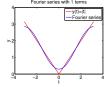
Eugeniy Mikhailov (W&M) Practical Computing Lecture 25 2/9
Fourier series example: |t|

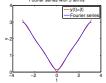
y(t) = |t|, -pi < t < pi

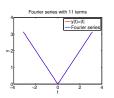
Since the function is even all $b_n = 0$









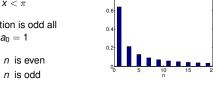


Fourier series example: step function

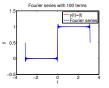
$$\begin{cases} 0, & -\pi < x < 0, \\ 1, & 0 < x < \pi \end{cases}$$

Since the function is odd all $a_n = 0$ except $a_0 = 1$

$$\begin{cases} b_n = 0, & n \text{ is even} \\ b_n = \frac{2}{\pi n}, & n \text{ is odd} \end{cases}$$



1.5			r(t)= t Fourier seri	es
> 0.5			\	^
-0.5	- <u>2</u>	0 t	2	4



4 D > 4 B > 4 E > 4 E > E + 9 9

ractical Computing

5 4/

Notes	
-------	--

Notes			
Notes			

Notes

Complex representation

Recall that

$$\exp(i\omega t) = \cos(\omega t) + i\sin(\omega t)$$

It can be shown that

$$y(t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_1 t)$$

$$c_n = \frac{1}{7} \int_0^T y(t) \exp(-i\omega_1 n t) dt$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

(□) (□) (Ξ) (Ξ) (Ξ) (Θ)

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 25

Notes

Notes

What to do if function is not periodic?

- $T \to \infty$
- $\sum \rightarrow \int$
- discrete spectrum → continuous spectrum
 - $c_n \rightarrow c_\omega$

$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c_{\omega} \exp(i\omega t) d\omega$$

$$c_{\omega} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t) \exp(-i\omega t) dt$$

Above requires that $\int_{-\infty}^{\infty} dt \ y(t)$ exists and is finite.

Note that c_{ω} has the extra $\sqrt{2\pi}$ when compared to c_n , and T is gone.

Eugeniy Mikhailov (W&M)

.

Lecture 25

Discrete Fourier transform (DFT)

In reality, we cannot have

- infinitely large interval
- infinite amount of points to calculate true integral

Assuming that y(t) has a period T and we took N equidistant points

$$\begin{array}{lcl} \Delta t & = & \frac{T}{N} \text{ samples spacing, } f_{\rm S} = \frac{1}{\Delta t} \text{ sampling rate} \\ f_{\rm 1} & = & \frac{1}{T} = \frac{1}{N\Delta t} \text{ smallest observed frequency,} \\ & & \text{also resolution bandwidth} \end{array}$$

$$t_k = \Delta t \times (k-1)$$

 $y(t_{k+N}) = y(t_k)$ periodicity condition
 $y_k = y(t_k)$ shortcut notation

 $y_1, y_2, y_3, \cdots, y_N$ data set

We replace the integral in the Fourier series with the sum

Eugeniy Mikhailov (W&M)

1 ≥ ≥ √0 Q

DFT

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i\frac{2\pi(k-1)n}{N})$$
 inverse Fourier transform
$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N})$$
 Fourier transform

Confusion keeps increasing: where are the negative coefficients c_{-n} ? In DFT, they moved to the right end of the c_n vector :

$$c_{-n}=c_{N-n}$$

4 D > 4 D > 4 E > 4 E > E 9 Q

geniy Mikhailov (W&M) Practical Comp

Lecture

Notes

Notes

Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just the smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points (y_k)
- c=fft (y) Fourier transform
- y=ifft (c) inverse Fourier transform

Notice that fft does not normalize by N. So to get Fourier series c_n , you need to calculate fft (y) /N.

However y = ifft(fft(y))

Notice one more point of confusion: Matlab does not have index=0, so actual $c_n = c_{matlab\ fft}(n-1)$, so $c_0 = c_{matlab\ fft}(1)$

4 D > 4 D > 4 E > 4 E > E 9 Q (

Eugeniy Mikhailov (W&M) Practical Computing Lecture 25 9 / 9

Notes	
Notes	
Notes	
INUIES	
Notes	