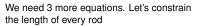
System of linear algebraic equations

Eugeniy E. Mikhailov

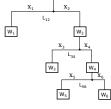
The College of William & Mary

Lecture 21


Notes

Mobile problem

Someone provided us with 6 weights and 3 rods. We need to calculate the positions of suspension points to have a balanced system.


If the system is in equilibrium, torque must be zero at every pivot point

$$w_1x_1 - (w_2 + w_3 + w_4 + w_5 + w_6)x_2 = 0$$

$$w_3x_3 - (w_4 + w_5 + w_6)x_4 = 0$$

$$w_5x_5 - w_6x_6 = 0$$

 $x_3 + x_4 = L_{34}$ $x_5 + x_6 = L_{56}$

Mobile problem continued

Let's define $w_{26} = w_2 + w_3 + w_4 + w_5 + w_6$ and $w_{46} = w_4 + w_5 + w_6$

$$\begin{array}{rcl} w_1 x_1 - w_{26} x_2 & = & 0 \\ w_3 x_3 - w_{46} x_4 & = & 0 \\ w_5 x_5 - w_6 x_6 & = & 0 \end{array}$$

$$-W_{46}X_4 = 0$$
 $\sum_{j} A_{ij}X_j = B_i \to 0$
 $X_1 + X_2 = L_{12}$ Matlab has a lot of

$$x_3 + x_4 = L_{34}$$

Matlab has a lot of built-in functions to solve problems in this form

$$\begin{pmatrix} w_1 & -w_{26} & 0 & 0 & 0 & 0 \\ 0 & 0 & w_3 & -w_{46} & 0 & 0 \\ 0 & 0 & 0 & 0 & w_5 & -w_6 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ L_{12} \\ L_{34} \\ L_{56} \end{pmatrix}$$

The inverse matrix method

$$\mathbf{A}\mathbf{x}=\mathbf{B}$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x}=\mathbf{x}=\mathbf{A}^{-1}\mathbf{B}$$

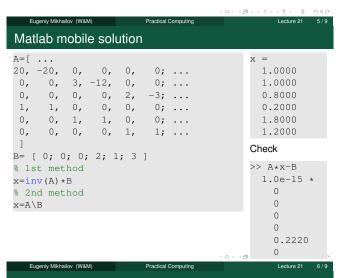
Analytical solution

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{B}$$
, only if det $(\mathbf{A}) \neq 0$

Matlab's straight forward implementation (not the fastest)

$$\mathbf{x} = \mathbf{inv}(\mathbf{A}) * \mathbf{B}$$

Matlab's faster way with the left division operator (recommended)


$$\mathbf{x} = \mathbf{A} \backslash \mathbf{B}$$

Natas			
Notes			
Notes			
Notes			

Recall the mobile problem

If $w_1=20$, $w_2=5$, $w_3=3$, $w_4=7$, $w_5=2$, $w_6=3$, $L_{12}=2$, $L_{34}=1$, and $L_{56}=3$, then $w_{26}=20$ and $w_{46}=12$.

$$\begin{pmatrix} 20 & -20 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & -12 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -3 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 1 \\ 3 \end{pmatrix}$$

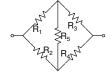
To do or not to do the inverse matrix calculation

Solutions based on the inverse matrix calculation involve extra steps (unnecessary for solution) and, thus, are slower

```
>> A=rand(4000);
>> B=rand(4000,1);
>> tic; x=inv(A)*B; toc
Elapsed time is 54.831124 seconds.
>> tic; x=A\B; toc
Elapsed time is 19.822778 seconds.
```

However, it is handy to calculate the inverse matrix in advance if you solve $\mathbf{A}\mathbf{x} = \mathbf{B}$ for different \mathbf{B} with the same \mathbf{A} .

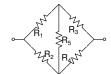
```
>> tic; Ainv=inv(A); toc
Elapsed time is 58.304244 seconds.
>> B1=rand(4000,1); tic; x1=Ainv*B1; toc
Elapsed time is 0.048547 seconds.
>> B2=rand(4000,1); tic; x2=Ainv*B2; toc
Elapsed time is 0.048315 seconds.

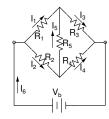

Eugenly Mikhalov (W&M)

Practical Computing

Lecture 21 7.9
```

Wheatstone bridge problem


Find the equivalent resistance of the following combination of resistors.



Notes			
140103			
Notes			
Notes			

Wheatstone bridge problem

Find the equivalent resistance of the following combination of resistors.

$$R_{eq} = \frac{V_l}{I_6}$$

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 21

JIE 21 0/9

Wheatstone bridge problem solution

						_		- 4					
									+ □	F (🗇)	4 E > 4 E	> E	200
% equ Req=V			sist	ance	of	the	e Wheat	sto	ne bridg				
I=A\B													
% Fin	d cur	rents											
B=[0;	0; 0	; 0;	Vb;	0];									
]										-			
									I5=R1*I1				
									I3=Vb				
				-	-		-		I5=R4*I4	en4a			
							combina (e3+eq4		1				
							I3+I4= combina		-				
							I4+I5=		-				
							I1+I5=						
							I1+I2=						
A=[
Vb=9;													
R1=1e	3; R2	=1e3;	R3=	2e3;	R4=	=2e3	3; R5=1	0e3	;				
%% Wh	eatst	one b	rido	je ca	lcul	lat:	ions						

lotes
lotes
lotes
Votes
votes