Ordinary Differential equations

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 19

Eugeniy Mikhailov (W&M)

Notes

ODE definitions

An ordinary equation of order *n* has the following form

$$y^{(n)} = f(x, y, y', y'', \cdots, y^{(n-1)})$$

x independent variable

$$y^{(i)} = \frac{\partial^i y}{\partial x^i}$$
, the i_{th} derivative of $y(x)$

f the force term

First order ODE example

Example

the acceleration of a body is the first derivative of velocity with respect to the time and equals to the force divided by mass

$$a(t) = \frac{dv}{dt} = v'(t) = \frac{F}{m}$$

 $t \to x$ independent variable

$$V \rightarrow Y$$

$$F/m \rightarrow f$$

And we obtain the canonical form

$$y^{(1)} = f(x, y)$$

for the first order ODE

n_{th} order ODE transformation to the system of first order ODEs

$$y^{(n)} = f(x, y, y', y'', \cdots, y^{(n-1)})$$

We define the following variables

$$y_1 = y, y_2 = y', y_3 = y'', \dots, y_n = y^{(n-1)}$$

$$\begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \\ \vdots \\ y'_{n-1} \\ y'_n \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix} = \begin{pmatrix} y_2 \\ y_3 \\ y_4 \\ \vdots \\ y_n \\ f(x, y_1, y_2, y_3, \cdots y_n), \end{pmatrix}$$

We can rewrite n_{th} order ODE as a system of first order ODEs

$$\vec{y}' = \vec{f}(x, \vec{y})$$

Notes

Notes

Notes

Cauchy boundary conditions

$$\vec{y}' = \vec{f}(x, \vec{y})$$

This is the system of n equations and thus requires n constraints.

With Cauchy boundary conditions, we specify $\vec{y}(x_0) = \vec{y}_0$ i.e. initial conditions

$$\begin{pmatrix} y_1(x_0) \\ y_2(x_0) \\ y_3(x_0) \\ \vdots \\ y_n(x_0) \end{pmatrix} = \begin{pmatrix} y_{1_0} \\ y_{2_0} \\ y_{3_0} \\ \vdots \\ y_{n_0} \end{pmatrix} = \begin{pmatrix} y_0 \\ y'_0 \\ y''_0 \\ \vdots \\ y_0^{(n-1)} \end{pmatrix}$$

Proble

If accele particle

First, w order O

so

We also position

Euler'

Let's, fo the vect

There is

The pro interval

Then, w the ODI

$$y(x+h) = y(x) + \int_{x}^{x+h} f(x,y(x)) dx \approx y(x) + f(x,y(x))h$$

Euler'

All we n and lea $x_0 + 2h$

Now, we n_{th} orde

Similarl compar and Sin there ar

DEs. $t \to x$ time as independent variable $x \to y \to y_1$ particle position $v \to y' \to y_2$ velocity $a \to f$ acceleration as a force term $x'' = a \to y'' = f \to \vec{y}' = \vec{f}(x, \vec{y}) \to \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ f \end{pmatrix}$ oneed to provide the initial conditions: $x \to y_1 \to y_2 \to y_1 \to y_2 \to y_1 \to y_2 \to y_2 \to y_2 \to y_1 \to y_2 \to y_2 \to y_2 \to y_2 \to y_1 \to y_2 \to $	
the need to convert it to the canonical form: the system of the first DEs. $t \to x \text{ time as independent variable}$ $x \to y \to y_1 \text{ particle position}$ $v \to y' \to y_2 \text{ velocity}$ $a \to f \text{ acceleration as a force term}$ $x'' = a \to y'' = f \to \vec{y}' = \vec{f}(x, \vec{y}) \to \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ f \end{pmatrix}$ The need to provide the initial conditions: $v \to y_1 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to y_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_2 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_2 \text{ and velocity } v_0 \to v_2 \to v_1 \text{ and velocity } v_0 \to v_2 \to v_2 \text{ and velocity } v_0 \to v_2 \to$	
DEs. $t \to x$ time as independent variable $x \to y \to y_1$ particle position $v \to y' \to y_2$ velocity $a \to f$ acceleration as a force term $x'' = a \to y'' = f \to \vec{y}' = \vec{f}(x, \vec{y}) \to \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ f \end{pmatrix}$ oneed to provide the initial conditions: $x \to y_1 \to y_2 \to y_1 \to y_2 \to y_1 \to y_2 \to y_2 \to y_2 \to y_1 \to y_2 \to y_2 \to y_2 \to y_2 \to y_1 \to y_2 \to $	
$x o y o y_1$ particle position $v o y' o y_2$ velocity $a o f$ acceleration as a force term $x'' = a o y'' = f o \vec{y}' = \vec{f}(x, \vec{y}) o \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} y_2 \\ f \end{pmatrix}$ oneed to provide the initial conditions: $x_1 o x_2 o y_1$ and velocity $x_2 o y_2 o y_2$ Mikhallow (WaM) Practical Computing Lecture 19 6/9 is method resimplicity, consider a simple first order ODE (notice the lack of for notation) $y' = f(x, y)$ is an exact way to write the solution $y(x_f) = y(x_0) + \int_{x_0}^{x_f} f(x, y) dx$ wholem is that $f(x, y)$ depends on y itself. However, on a small	
o need to provide the initial conditions: $x_0 \to y_{1_0} \text{ and velocity } v_0 \to y_{2_0}$ Mikhallov (W&M) Practical Computing Lecture 19 679 S method Notes or simplicity, consider a simple first order ODE (notice the lack of tor notation) $y' = f(x, y)$ Is an exact way to write the solution	
on need to provide the initial conditions: $ (x_0 \to y_1)_0 \text{ and velocity } v_0 \to y_2)_0 $ Mikhallow (WaM) Practical Computing Lecture 19 6/9 is method In simplicity, consider a simple first order ODE (notice the lack of four notation) $ y' = f(x,y) $ is an exact way to write the solution $ y(x_f) = y(x_0) + \int_{x_0}^{x_f} f(x,y) dx $ wholem is that $f(x,y)$ depends on y itself. However, on a small	
Notes or simplicity, consider a simple first order ODE (notice the lack of the property of the property of the simple first order ODE (notice the lack of the property of the	
s an exact way to write the solution $y(x_f) = y(x_0) + \int_{x_0}^{x_f} f(x,y) dx$ blem is that $f(x,y)$ depends on y itself. However, on a small	
blem is that $f(x, y)$ depends on y itself. However, on a small	
e can use the familiar box integration formula. In application to E, this is called the Euler's method.	
$(x+h) = y(x) + \int_{x}^{x+h} f(x,y(x))dx \approx y(x) + f(x,y(x))h$	
Mikhaliov (W&M) Practical Computing Lecture 19 7/9	
method continued	
Notes	
y(x+h) = y(x) + f(x,y)h	
eed is to split our interval into a bunch of steps of the size h of frog from the first x_0 to the next one $x_0 + h$, then to the and so on. e can make an easy transformation to the vector case (i.e. the r ODE)	
$\vec{y}(x+h) = \vec{y}(x) + \vec{f}(x,y)h$	
y to the boxes integration method, which is inferior in son to more advance methods, for example, the trapezoidal apson's, the Euler's method is very imprecise for a given h and e better ways.	
Mikhailov (W&M) Practical Computing Lecture 19 8/9	
mindano (Mun) Priducia Componing Lecture 19 8 / 9	

Notes

Stability issues for the numerical solution

Let's have a look at the first order ODE

$$y'=3y-4e^{-x}$$

The

Notes

ode_unstable_example.m script compares the numerical and the analytical

It has a the offermore and the standards	solutions	
It has the following analytical solution	y vs. x	
$y = Ce^{3x} + e^{-x}$	numerical analytical	
If the initial condition $y(0) = 1$, then the	> 0	
solution is	-0.5	
$y(x) = e^{-x}$		
It is clear that the numerical solution diverg	*	
solution. The problem is in the round off en	rors. From a computer point	
of view, $y(0) = 1 + \delta$. Thus, $C \neq 0$ and the	numerical solution diverges.	
Do not trust the numerical solutions (regard proper consideration!		
Eugeniy Mikhailov (W&M) Practical Computing	4 □ > 4 ② > 4 ② > 4 ② > 4 ② > 3 → 9 Lecture 19 9/9	
		Notes
		Notes
		Notes