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Nature’s way to find a minimum energy

We see that probing full space permitted by combinatorics is not
practical even for a reasonably small size problem.

However, nature seems to handle the problem of the energy
minimization without any trouble.
For example, if you heat up a piece of metal and then slowly cool
it, i.e. anneal, then the system will reach the minimum energy
state.
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Simulated annealing or modified Metropolis algorithm

Below is modified Metropolis and coworkers’ algorithm, suggested in
1953, mimicking the Boltzmann energy distribution law.

1 set the temperature to a high value, so kT is larger then typical
energy (merit) function fluctuation.

This requires some experiments if you do not know this a priori
2 assign a state ~x and calculate the energy (E) at this point
3 change, somehow, the old ~x to generate a new one, ~xnew

~xnew should be somewhat close/related to the old optimal ~x
4 calculate the energy at the new point Enew = E(~x)
5 if Enew < E then x = xnew and E = Enew

i.e., we move to the new point of the lower energy
6 otherwise, move to the new point with probability

p = exp(−(Enew − E)/kT )
this resembles the Boltzmann energy distribution probability

7 decrease the temperature a bit, i.e., keep annealing
8 repeat from the step 3 for a given number of cycles
9 ~x will hold the local optimal solution
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Simulated annealing/Metropolis algorithm facts

In finite time (limited number of cycles), the algorithm is guaranteed to
find only the local minimum.

There is a theorem which states:

The probability to find the best solution goes to 1, if we run the
algorithm for a longer and longer time with a slower and slower rate of
cooling.

Unfortunately, this theorem is of no use since it does not give a recipe
of how long to run the algorithm. It is even suggested that it will need
more cycles than the brute force combinatorial search.
However, in practice a very good solution can be found in quite short
time with quite small number of cycles.
The Metropolis algorithm method is not limited to the discrete space
problems, and can be used for the problems accepting real values of
the ~x components.

the main challenge is to find a good way to choose a new ~x to
probe.
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Backpack problem with Metropolis algorithm

The main challenge is to find a good routine to generate a new
candidate for the ~xnew . We do not want to randomly jump to an
arbitrary position of problem space.
Recall that ~x generally looks like [0,1,1,0,1, · · · ,0,1,1] so lets
just randomly toggle/mutate some choices/bits

note that a random mutation could lead to the overfilled backpack
The rest is quite straight forward, as long as we remember, that
we are looking for the maximum value in the backpack, while the
Metropolis algorithm is designed for the merit function
minimization. So, we choose our merit function to be the negative
value of all items in the backpack. Also, we need to add a big
penalty for the case of the overfilled backpack.
See the realization of the algorithm in the
backpack_metropolis.m file.
it will find quite a good solution for the “30 items to choose”
problem within a second instead of 13 hours of combinatorial
search.
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Genetic algorithm

The idea is taken from nature, which is usually able to find the optimal
solution via the natural selection.
This algorithm has many modifications but the main idea is the
following

1 Generate a population (set of {~x}).
It is up to you to decide how large this set should be.

2 Find the fitness (i.e. merit) function for each member of the
population.

3 Remove from the pool all but the most fitted.
How many should stay is up to the heuristic tweaks.

4 From the most fitted (parents) breed a new population (children) to
the size of the original population.

5 Repeat several times starting from step 2.
6 Select the fittest member of your population to be the final

solution.
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How to generate children from parents

As usual, the most important question is the generation of a new ~x , i.e.
a child, from the older ones.
Let’s use the recipe provided by nature. We will refer to ~x as a
chromosome or genome.

1 choose two parents randomly
2 crossover/recombine parents chromosomes i.e. take randomly

gens ( ~x components) from either parent and assign them to a
new child chromosome/genome

3 mutate (change) randomly some gens
Some algorithm modifications allow parents to be in the new cycle of
selection, others eliminate them in the hope to escape from a local
minimum.
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What to expect when using the genetic algorithm

To find a good solution, you need a large population, since this
lets you to explore a larger parameter space. Think about
evolution strategies of microbes versus humans. But this in turn
leads to a longer computational time for every selection cycle.
The algorithm is not guaranteed to find the global optimum in finite
time.
A nice feature of the genetic algorithm is that it suits the parallel
computation paradigm: you can evaluate the fitness of each child
on a different CPU and then compare their fitness.
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