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Combinatorial optimization problem statement

We still want to optimize (minimize) our multidimensional merit function
E

Find ~x that minimizes E(~x) subject to g(~x) = 0,h(~x) ≤ 0

The only difference is that values of the ~x are discrete, i.e. any
component of the ~x can take a countable set of different values.

In this case, we cannot run our golden search algorithm or anything
else which assumes continuous space for the ~x .

Well, actually we can
but constructing a proper constraining function will be a nightmare.

Instead, we have to find a method to search through discrete sets of all
possible input values, i.e. try all possible combinations of ~x
components.

Hence, the name combinatorial optimization.
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Example: Backpack problem

Suppose you have a backpack with the given size (volume) and a set
of objects with given volumes and monetary (or sentimental) values.

Our job is to find a subset of items that still fits in the backpack and has
the maximum combined value.

For simplicity, we will assume that every item occurs only once.
Our job is to maximize

E(~x) =
∑

valueixi =
−−−−→
values · ~x

Subject to the following constraints∑
volumeixi =

−−−−−→
volumes · ~x ≤ BackpackSize

Where xi = (0 or 1), i.e. it reflects whether we take this object or not.
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Brute force optimization

With this approach, we will just try all possible combinations of items
and find the best of them.

Notice that if there are N objects then the number of all possible
combinations is 2N .

So, both the size of the problem space and, thus, the solving time grow
exponentially.
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Backpack optimization: new test set generation

Recall that the ~x component is either 0 or 1.
So, ~x is a combination of zeros and ones
~x = [0,1,0,1, · · · ,1,1,0,1,1].
How would we generate all possible combinations of ~x components?

~x looks like a binary number.
let’s start with ~x = [0,0,0,0, · · · ,0,0]
every new component will be generated by adding 1 to the
previous x according to binary addition rules

for example
xnext = [1,0,1, · · · ,1,1,0,1,1] + 1 = [1,0,1, · · · ,1,1,1,0,0]

for every new ~x , we check to see if the items fit into the backpack
and if the new packed value is larger than the previous
once we have tried all 2N combinations of ~x , we are done

The time of the optimization grows exponentially with the number N of
items to chose, but we will find the global optimum.
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Backpack optimization: test run

For realization of this algorithm, have a look at the
backpack_binary.m
Sample run

backpack_size=7;
volumes=[ 2, 5, 1, 3, 3];
values =[ 10, 12, 23, 45, 4];
[items_to_take, max_packed_value] = ...

backpack_binary( backpack_size, volumes, values)

items_to_take = [1 3 4]
max_packed_value = 78

My computer sorts through 20 items in 47 seconds, but 30 items
would take 1000 times longer, i.e. about 13 hours to solve.
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Example: Traveling salesman problem

Suppose that you have N cities (with given coordinates) to visit.
A salesman starts in the city 1 and need to be in the Nth city at the
end of a route.
The salesman must visit every city and do it only once.
Find the shortest route which satisfies the above conditions.

This problem has a lot of connections to the real world. Every time you
ask your GPS to find a route, the GPS unit has to solve a similar
problem. The traces placement on a printed circuit board is essentially
the same problem, as well.
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Since the ends points are fixed,
the combinatorial complexity of
this problem

(N − 2)!

This grows very fast with the N
increase.
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Possible brute force solution

Try every possible combination (permutation) of the cities ordering
and choose the best one.
Will work for the modest cities number N ≤ 10 or may be slightly
more.
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Permutation generating algorithm

The method below goes back to 14th century India1.
1 Start with the set sorted in the ascending order, i.e.

p = [1,2,3,4, · · · ,N − 2,N − 1,N]

2 Find the largest index k such that p(k) < p(k + 1).
If no such index exists, the permutation is the last permutation.

3 Find the largest index l such that p(k) < p(l).
There is at least one l = k + 1

4 Swap p(k) with p(l).
5 Reverse the sequence from p(k + 1) up to and including the final

element p(end).
6 We have a new permutation. If we need another, repeat from the

step 2.
See the complimentary code permutation.m

1See “The Art of Computer Programming, Volume 4 : Generating All Tuples and
Permutations” by Donald Knuth for the discussion of the algorithm
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