Optimization problem

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 15

Eugeniy Mikhailov (Wem)	Practical Computing	Lecture 15	$1 / 7$
Introduction to optimization			
Find \vec{x} that minimizes $E(\vec{x})$ subject to $g(\vec{x})=0, h(\vec{x}) \leq 0$			
Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow-E(\vec{x})$. In general, there is no guaranteed way (i.e., algorithm) to find the global minimum point at finite time in a general case.			
Eugeniy Mikhailov (Wem)	Practical Computing	Lecture 15	$2 / 7$
Analytical solution of the 1D case			

If we have the 1D case and $E(x)$ has the analytical derivative, the optimization problem can be restated as

Find x such that $f(x)=0$ where $f(x)=d E / d x$

We already know how to find the solution of $f(x)=0$, so the rest is easy. Note that we will find a local minimum or maximum.

spectrum

According to Plank's law energy density per of black body radiation

$$
I(\lambda, T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda K T}}-1}
$$

where
h is the Planck constant $6.626 \times 10^{-34} \mathrm{~J} \times \mathrm{s}$,
c is the speed of light $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$,
k is the Boltzmann constant $1.380 \times 10^{-23} \mathrm{~J} / \mathrm{K}$,
T is the body temperature in K ,
λ is the wavelength in m

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
function I_lambda=black_body_radiation (lambda,T)
\% black body radiation spectrum
\% lambda - wavelength of EM wave
$\% \mathrm{~T}$ - temperature of a black body
$\mathrm{h}=6.626 \mathrm{e}-34 ; \%$ the Plank constant
$\mathrm{c}=2.998 \mathrm{e} 8$; $\%$ the speed of light
$\mathrm{k}=1.380 \mathrm{e}-23$; \% the Boltzmann constant
I_lambda $=2 \star h * c^{\wedge} 2 . /(\operatorname{lambda} . \wedge 5) \quad . /(\exp (h * c . /(\operatorname{lambda} * k * T))-1)$; end
First, we flip/negate the function since our
Next, we plot it to algorithm is suited for a minimum search and set the T close to Sun temperature

T=5778;

$\mathrm{f}=@(\mathrm{x})$ - black_body_radiation (x, T);
Finally, we find the minimum location
fminbnd (f,1e-9,2e-6,optimset('ToIX',1e-12))
ans $=5.0176 \mathrm{e}-07$
ans $=5.0176 \mathrm{e}-07$
$\%$ i.e., the maximum of Sun radiation is at 502 nm

Golden section search algorithm

If you have an initial bracket for solution i.e. found a, b points such that there is a point x_{p} satisfying $a<x_{p}<b$ and $E\left(x_{p}\right)<\min (E(a), E(b))$.
(1) Calculate $h=(b-a)$
(2) Assign new probe points $x_{1}=a+R * h$ and $x_{2}=b-R * h$
(3) $E_{1}=E\left(x_{1}\right), E_{2}=E\left(x_{2}\right), E_{a}=E(a), E_{b}=E(b)$
(9) Note that for small enough $h: E\left(x_{1}\right)<E(a)$ and $E(x 2)<E(b)$
(6) Shrink/update the bracket

- if $E_{1}<E_{2}$ then $b=x_{2}, E_{b}=E_{2}$ else $a=x_{1}, E_{a}=E_{1}$
(6) if $h<\varepsilon_{x}$ then stop otherwise do steps below
(With the proper R, we can reuse one of the old points; either x_{1}, E_{1} or x_{2}, E_{2} Thus, we reduce the calculation time
- if $E_{1}<E_{2}$
then $x_{2}=x_{1}, E_{2}=E_{1}, x_{1}=a+R * h, E_{1}=E\left(x_{1}\right)$
else $x_{1}=x_{2}, E_{1}=E_{2}, x_{2}=b-R * h, E_{2}=E\left(x_{2}\right)$
(8) Go to step 5

The R is given by the golden section $R=\frac{3-\sqrt{5}}{2} \approx 0.38197$
Derivation of the R value
at the first step we have

$$
\begin{aligned}
& x_{1}=a+R * h \\
& x_{2}=b-R * h
\end{aligned}
$$

If $E\left(x_{1}\right)<E\left(x_{2}\right)$, then $a^{\prime}=a$ and $b^{\prime}=x_{2}$ then, to find the next bracket, we evaluate x_{1}^{\prime} and x_{2}^{\prime}

$x_{1}^{\prime}=a^{\prime}+R * h^{\prime}=a^{\prime}+R *\left(b^{\prime}-a^{\prime}\right)$
$x_{2}^{\prime}=b^{\prime}-R * h^{\prime}=b^{\prime}-R *\left(b^{\prime}-a^{\prime}\right)$
$=x_{2}-R *\left(x_{2}-a\right)=b-R * h-R *(b-R * h-a)$
we would like to reuse one of the previous evaluations of E, so we require that $x_{1}=x_{2}^{\prime}$. This leads to the equation

$$
R^{2}-3 R+1=0 \text { with } R=\frac{3 \pm \sqrt{5}}{2}
$$

We need to choose minus sign since fraction $R<1$

