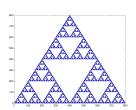
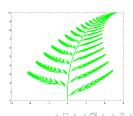
Fractals

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 12





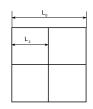
Dimension definition

Let's take a square.

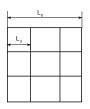
What is its dimension?

$$L_1 = L_0$$

 $N_1 = 1 = 1$



$$N_2 = 4 = 2^2$$



$$L_3 = L_0/3$$

 $V_3 = 9 = 3^2$

Let's define scale as $s_n = L_0/L_n$ so both N_n and s_n grow with n

Dimension

$$D = \lim_{n \to \infty} \frac{\log N_n}{\log s_n}$$

For square

$$D = \lim_{n \to \infty} \frac{\log n^2}{\log n} = 2$$

What about this figure: Sierpinski triangle What is its dimension?

What about this figure: Sierpinski triangle What is its dimension?

$$L_1 = L_0/2 = L_0/2^1$$

 $N_1 = 3 = 3^1$

What about this figure: Sierpinski triangle What is its dimension?

$$L_1 = L_0/2 = L_0/2$$

 $N_1 = 3 = 3^1$

$$L_1 = L_0/2 = L_0/2^1$$
 $L_2 = L_0/4 = L_0/2^2$
 $N_1 = 3 = 3^1$ $N_2 = 9 = 3^2$

What about this figure: Sierpinski triangle What is its dimension?

$$L_1 = L_0/2 = L_0/2^1$$
 $L_2 = L_0/4 = L_0/2^2$ $L_3 = L_0/8 = L_0/2^3$ $N_1 = 3 = 3^1$ $N_2 = 9 = 3^2$ $N_3 = 27 = 3^3$

$$L_2 = L_0/4 = L_0/2^2$$

 $N_2 = 9 = 3^2$

$$L_3 = L_0/8 = L_0/2^3$$

 $V_3 = 27 = 3^3$

What about this figure: Sierpinski triangle What is its dimension?

$$L_1 = L_0/2 = L_0/4$$

 $N_1 = 3 = 3^1$

$$L_1 = L_0/2 = L_0/2^1$$
 $L_2 = L_0/4 = L_0/2^2$ $L_3 = L_0/8 = L_0/2^3$ $N_1 = 3 = 3^1$ $N_2 = 9 = 3^2$ $N_3 = 27 = 3^3$

$$L_3 = L_0/8 = L_0/2^3$$

 $N_3 = 27 = 3^3$

Dimension

$$D = \lim_{n \to \infty} \frac{\log N_n}{\log s_n} = \lim_{n \to \infty} \frac{\log N_n}{\log L_0/L_n}$$

What about this figure: Sierpinski triangle What is its dimension?

$$L_1 = L_0/2 = L_0$$

 $N_1 = 3 = 3^1$

$$L_2 = L_0/4 = L_0/2^2$$

$$L_1 = L_0/2 = L_0/2^1$$
 $L_2 = L_0/4 = L_0/2^2$ $L_3 = L_0/8 = L_0/2^3$
 $N_1 = 3 = 3^1$ $N_2 = 9 = 3^2$ $N_3 = 27 = 3^3$

Dimension

$$D = \lim_{n \to \infty} \frac{\log N_n}{\log s_n} = \lim_{n \to \infty} \frac{\log N_n}{\log L_0 / L_n}$$

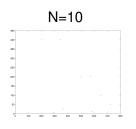
$$D = \lim_{n \to \infty} \frac{\log 3^n}{\log 2^n} = \frac{\log 3}{\log 2} = 1.585$$

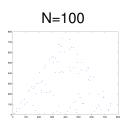
For square

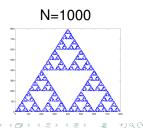
$$0 = \lim_{n \to \infty} \frac{\log 3^n}{\log 2^n} = \frac{\log 3}{\log 2} = 1.585$$

Chaos to order: fractional division - fractal

- Choose 3 vertexes for a triangle
- Choose random point inside the triangle
- Choose a vertex at random
- Mark a point half-way between known point and the chosen vertex
- Seplace coordinates of old point with this one
- repeat from step 3







Affine transformations

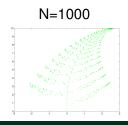
Generate a new point from the old one

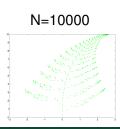
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$

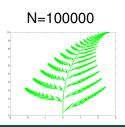
Old point could be

- translated
- scaled
- rotated

Example the Barnsley fern







Coastline length problem

Box counting algorithm Length of the coast line

$$L_{tot} = L_n N_n$$

Recall that

$$L_n = L_0/s_n$$

$$D = \log(N)/\log(s)$$

then
$$N = s^D$$

$$L_{tot} = \frac{L_0}{s} s^D = L_0 s^{D-1}$$

If D > 1 $L_{tot} = \infty$ with the scale $(s_n \sim 1/L_n)$ grows with smaller and smaller box

