
Other useful tools

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 11

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 1 / 9

Specialization is . . .

A human being should be able to change a diaper, plan an
invasion, butcher a hog, conn a ship, design a building, write
a sonnet, balance accounts, build a wall, set a bone, comfort
the dying, take orders, give orders, cooperate, act alone,
solve equations, analyze a new problem, pitch manure,
program a computer, cook a tasty meal, fight efficiently, die
gallantly.

Specialization is for insects.

Lazarus Long, “Time Enough For Love”
by Robert A. Heinlein

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 2 / 9

Specialization is . . .

A human being should be able to change a diaper, plan an
invasion, butcher a hog, conn a ship, design a building, write
a sonnet, balance accounts, build a wall, set a bone, comfort
the dying, take orders, give orders, cooperate, act alone,
solve equations, analyze a new problem, pitch manure,
program a computer, cook a tasty meal, fight efficiently, die
gallantly. Specialization is for insects.

Lazarus Long, “Time Enough For Love”
by Robert A. Heinlein

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 2 / 9

Scientists’ computer related toolbox

Programming languages
Matlab/Octave - computational prototyping and post processing
C/C++/Fortran - fast number crunching
sed, grep, perl, awk - data parsing
bash, zsh, tclsh - shells for program start up and interfacing
tcl/TK - gui, program interfacing, bindings to compiled functions
Other languages of choice: Python, Java, . . .

Remote computers access
ssh, putty - secure terminals, scp (and other analogs) - secure copy
screen - ability to deattach and reattach programs output

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 3 / 9

Notes

Notes

Notes

Notes

http://www.gnu.org/software/octave/


Scientist computer related toolbox (continued)

Operational Systems
Unix, Linux - stable and easy to use
Macs - flashy, but has Unix inside (if you know how to get there)
Windows - usually has drivers for the scientific hardware

Data acquisition
Matlab
LabWindows - C/C++ like language
LabView - easy things are easy, hard are almost impossible

I personally avoid it at all cost

home made interfaces - whatever you do, make your data human
readable (ideally, it should be in plain text)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 4 / 9

Scientist computer related toolbox (continued)

make - automatic dependencies resolver
Data synchronization between computers

rsync - only modifications are copied
unison - easy to use wrapper for above

Data backups and archiving. Yes, they are not the same.
ideal backup/archive should put important data to at least 3
locations separated by more than 50 km
rdiff-backup - archiving wrapper for rsync

Report preparation
vim (Vi iMproved), emacs - editors
latex and friends - publication quality output
pandoc, txt2tags - convert simple text format to tex, html, txt, pdf
and so on
beamer (latex) - presentations
some people use PowerPoint, but only because it did not yet fail
them during an important presentation.

Version control software
cvs, svn, git, darcs, bazaar, subversion

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 5 / 9

General guidelines

Whatever you use, read the manual!
If you cannot access computer remotely, do not use it.

Do you really want to run home if you forget a file?
Be a human and, thus, lazy.

If you did something more than twice, write a script for it.
Whatever you do, stay away from point and click interfaces.

they are easy to start using, but hard to expand and automate
If you can type commands, so can the other program.

Here comes the requirement for the human readable data streams
and command interfaces.

Do not rerun all computations, save the intermediate results.
You do not want to restart a month long computation because of a
power glitch.

Split your work:
gather data,
process/analyze it.

Analyze your data with scripts.
If you find an error in the method, you just fix the script and let a
computer reanalyze the data.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 6 / 9

Free software

Avoid use of software which is not used by its developers.
Whenever you can, use free (see The Free Software Definition)
software

It is usually free of charge as well.
Developers are usually more responsive to your bug reports.
In the worst case scenario, you can fix it yourself and nobody will
put you in jail for doing it.

I personally use
Linux as a free operational system which has more than 43,000
software packages available (at least if you use Debian)
Octave as an open software substitution for Matlab

they are not 100% interchangeable but close enough

gnuplot for publication quality plots preparation

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 7 / 9

Notes

Notes

Notes

Notes

http://www.cis.upenn.edu/~bcpierce/unison/
http://www.vim.org/
http://pandoc.org/
http://txt2tags.org/
https://bitbucket.org/rivanvx/beamer/wiki/Home
http://git-scm.com/
http://darcs.net/
http://www.gnu.org/philosophy/free-sw.html
http://www.debian.org/
http://www.gnu.org/software/octave/
http://www.gnuplot.info/


Version control software - git

git - Designed by Linus Torvalds and community to

have an archive of your work
easily recover mistakes
annotate changes
synchronize with remote repositories
share your work and patches with others (web, emails, etc)
see who did what
keep your own forks of projects
keep decision about including other people contribution to yourself

While it was designed mainly by programmers for programmers, it can
be used for many other things (especially, if your files are in the simple
text format).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 8 / 9

Final remarks

The most important part of the computer is the one placed
between a screen and a chair.
Computers and programs are just tools. They are useless by
themselves.
Computers do not do what you want but what you asked for.
Programming is easy, but debugging is hard.

If you do not know what to do, you won’t be able to ask computer to
do it.
ALWAYS think about test cases.

Things to avoid
Never call the result of computer simulation/modeling a result of an
experiment. Experimental physicists will be very upset.
Never blindly trust the result of modeling or a program output.
Don’t ever base your decision solely on a numerical simulation, i.e.,
do not let the computer make your decisions for you.

Always have an override switch.

Be lazy, but in a good way.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 11 9 / 9

Notes

Notes

Notes

Notes

http://git-scm.com/

	Scientist toolbox
	Free software
	Version control software
	Final remarks

