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Integration problem statement

Suppose we are given function

f (x)

our goal is to find ∫ b

a
f (x)dx

Not all function can be easily integrated analytically in the elementary
enough form.

Example ∫ y

0
exp(−x2)dx

So we must use numerical methods.
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The Rectangle method

Recall the Riemann integral definition our goal is to find∫ b

a
f (x)dx = lim

N→∞

N−1∑
i=1

f (xi)h

where N is the number of points, h = (b − a)/(N − 1) is the distance
between points.
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The Rectangle method continued

Riemann rule is almost direct recipe.

Rectangle method

∫ b

a
f (x)dx ≈

N−1∑
i=1

f (xi)h, where h =
b − a
N − 1

and xi = a + (i − 1)h

We just need to remember about round off errors so h should not be
too small or equivalently N should not be to big.
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h
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Trapezoidal method

Trapezoidal method

∫ b

a
f (x)dx ≈ h× (

1
2

f1 + f2 + f3 + · · ·+ fN−2 + fN−1 +
1
2

fN) = h
N∑

i=1

f (xi)wi ,

where h =
b − a
N − 1

and xi = a + (i − 1)h
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Simpson method

Simpson method - approximation by parabolas

∫ b

a
f (x)dx ≈ h

1
3
× (f1 + 4f2 + 2f3 + 4f4 + · · ·+ 2fN−2 + 4fN−1 + fN)

= h
N∑

i=1

f (xi)wi , where h =
b − a
N − 1

and xi = a + (i − 1)h

note that N must be in special form N = 2k + 1, i.e. odd
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