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Secant method

X 1X 2

X 5

X 4

f(x)

xX 3

xi+2 = xi+1 − f (xi+1)
xi+1 − xi

f (xi+1)− f (xi)

Need to provide two starting points x1 and x2.
Secant method converges with m = (1 +

√
5)/2 ≈ 1.618
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Newton-Raphson method

X 1
X 2

X 4

f(x)

xX 3

xi+1 = xi −
f (xi)

f ′(xi)

Need to provide a starting points x1 and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).
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Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)
h

The initial intent is to calculate it at very small h.

Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)
2!

h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)
2

h + · · ·

Here computed approximation and algorithm error. There is a range of
optimal h when both the round off and the algorithm errors are small.
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Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error for small h

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f (x + h) = a + b(x + h)2 = a + bx2 + 2bxh + bh2

f ′c(x) =
f (x + h)− f (x)

h
= 2bx+bh

So for small x , the algorithm error dominates our approximation!
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Derivative via Central difference

f ′c(x) =
f (x + h)− f (x − h)

2h

Algorithm error

εcd ≈
f ′′′(x)

6
h2
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Ridders method - smart variation of false position

Solve f (x) = 0 with the following approximation of the function
f (x) = g(x)exp(−C(x − xr )), where g(x) = a + bx i.e. linear.
In this case if g(x0) = 0 then f (x0) = 0, but g(x) = 0 is trivial to solve.

X1

f(x)

xX3
X2

f1

f3
f2g3X4

g2

g1

g(x)

One can say that

g(x) = f (x)exp(C(x − x1)) = a + bx

Where we choose xr = x1
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Ridders method implementation

1 bracket the root between x1 and x2, i.e. function must have
different signs at these points: f (x1)× f (x2) < 0

2 find the mid point x3 = (x1 + x2)/2
3 find new approximation for the root

x4 = x3 + sign(f1 − f2)
f3√

f 2
3 − f1f2

(x3 − x1)

where f1 = f (x1), f2 = f (x2), f3 = f (x3)
4 check if x4 satisfies convergence condition and we should stop
5 rebracket the root, i.e. assign new x1 and x2, using old values

one end of the bracket is x4 and f4 = f (x4)
the other is whichever of (x1, x2, x3) is closer to x4 and provides
proper bracket.

6 proceed to step 2
Nice features: x4 is guaranteed to be inside the bracket, convergence
of the algorithm is quadratic per cycle (m = 2). But it requires
evaluation of the f (x) twice for f3 and f4 thus it is actually m =

√
2.
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Root finding algorithm gotchas

Bracketing algorithms are
bulletproof and will always
converge, however false
position algorithm could be
slow.

X 1
X 2 X 4

f(x)

x

X 3X 5

Newton-Raphson and secant
algorithms are usually fast but
starting points need to be close
enough to the root.

X 1

X 2

f(x)

xX 3
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Root finding algorithms summary

Root bracketing algorithms
bisection
false position
Ridders

Pro
robust i.e. always
converge.

Contra
usually slower
convergence
require initial bracketing

Non bracketing algorithms
Newton-Raphson
secant

Pro
faster
no need to bracket (just
give a reasonable starting
point)

Contra
may not converge

See Matlab built in function fzero for equivalent tasks.
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