Notes

Root finding continued

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 08

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 1/10

Secant method

Notes
Xiy1 — X;
Xipo = Xip1 — F(Xipt) 1
i+2 i+1 (i+1) f(Xi+1) _ f(XI')
Need to provide two starting points x; and xo.
Secant method converges with m = (1 ++/5)/2 ~ 1,618
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 2/10
Newton-Raphson method
Notes
f(x;)
Need to provide a starting points x; and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 3/10
Numerical derivative of a function
Notes

Mathematical definition

/00 = im F(x + hf), — f(x)

The initial intent is to calculate it at very small h.

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 4/10

Numerical derivative of a function

Mathematical definition Notes
. f(x+ h)—f(x)
4 p—
10 = fm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
100 = Jm ==
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 4/10
Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
70 = Jm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
Let's be smarter. Recall Taylor series expansion
f/ f//
f(x+h) = f(x)+%h+ 2(|X)h2+-»-
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 4/10
Numerical derivative of a function
Notes

Mathematical definition

/00 = im Fx + hf), — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

f(x+h) = f(x)+@h+ %hﬂ

So we can see
f(x + h) — f(x) ’(x)

flx) = = = () h

Here computed approximation and algorithm error.

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 4/10

Numerical derivative of a function

Mathematical definition Notes

/00 = im F(x + h/)1 — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

.

f(x + h) = £(x) + @h + fﬂé!x)

So we can see
f(x + h) — f(x) 7(x)

flx) = o = () h

Here computed approximation and algorithm error. There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 4/10

Derivative via Forward difference

£(x) = f(x + h,), — f(x) J

Notes

Algorithm error for small h

fl/(x)
5 h

Efd ~

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 5/10

Derivative via Forward difference

Notes

£(x) = f(x + h,)7 — f(x) J

Algorithm error for small h

fl/(x)h

Efd ~

This is quite bad since error is proportional to h.

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 5/10

Derivative via Forward difference

Notes
_ fix+h) = f(x)

() —h J

Algorithm error for small h

fl/(X)h

Efd ~

This is quite bad since error is proportional to h.

Example

f(x) = a+bx®

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 5/10

Derivative via Forward difference

Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
f”(X)
= h
Efd 2
This is quite bad since error is proportional to h.
a+ bx?
f(x+h) = a+b(x+h)?=a+ bx®+2bxh+ b
Derivative via Forward difference
Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
fl/(x)
Efd = > h
This is quite bad since error is proportional to h.
f(x) = a+bx?
f(x+h) = a+b(x+ h)?=a+ bx?+2bxh+ bh?
f1(x) f(XL’)r_f(X) — 2bx+bh
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 5/10
Derivative via Forward difference
Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
7
Efg = f (X)h
This is quite bad since error is proportional to h.
f(x) = a+bx?
f(x+h) = a+b(x+h)?=a+ bx?+2bxh+ bh?
B = XEDZ10 h}) =10) _ a1 b
So for small x, the algorithm error dominates our approximation!
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 5/10
Derivative via Central difference
Notes

fo(x) =

f(x + h) — f(x — h) J

2h

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 6/10

Derivative via Central difference

f(x+h)—f(x—h
2h
Algorithm error
f(x)
Ecd X —— N
cd 6
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 6/10

Ridders method - variation of false position

Solve f(x) = 0 with the following approximation of the function
f(x) = g(x) exp(—C(x — xr)), where g(x) = a+ bx i.e. linear.
In this case if g(xp) = 0 then f(xp) = 0, but g(x) = 0 is trivial to solve.

A

One can say that

g(x) = f(x)exp(C(x — x1)) = a+ bx J

Where we choose x, = x4

Eugeniy Mikhailov (W&M) Practical Computing

Ridders method implementation

Lecture 08 7/10

@ bracket the root between x; and x», i.e. function must have
different signs at these points: f(xq) x f(x2) <0

@ find the mid point x3 = (X + X2)/2

@ find new approximation for the root

f3

B (x5 x1)
N

where fy = f(x1), & = f(x2), s = f(X3)
@ check if x4 satisfies convergence condition and we should stop
@ rebracket the root, i.e. assign new x; and xo, using old values
o one end of the bracket is x4 and f, = f(xs)

o the other is whichever of (x4, X2, X3) is closer to x4 and provides
proper bracket.

@ proceed to step 2
Nice features: x4 is guaranteed to be inside the bracket, convergence

of the algorithm is quadratic per cycle (m = 2). But it requires
evaluation of the f(x) twice for £ and f, thus it is-actually m =v/2.

Eugeniy Mikhailov (W&M) Practical Computing

Root finding algorithm gotchas

X4 = X3 + sign(fy —)

Lecture 08 8/10

Eugeniy Mikhailov (W&M) Practical Computing

Lecture 08 9/10

Notes

Notes

Notes

Notes

Root finding algorithm gotchas

Notes
Bracketing algorithms are
bulletproof and will always
converge, however false
position algorithm could be
slow.
f(x)
) Xy X3
x’\\i\&_i—i‘ﬂ X
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 9/10
Root finding algorithm gotchas
Notes
Bracketing algorithms are Newton-Raphson and secant
bulletproof and will always algorithms are usually fast but
converge, however false starting points need to be close
position algorithm could be enough to the root.
slow.
f(x)
e \/\
Xy
X X3 } t T
| S i | Xz X
Eugeniy Mikhailov (W&M) Practical Computing Lecture 08 9/10
Root finding algorithms summary
Notes
Root bracketing algorithms Non bracketing algorithms
@ bisection @ Newton-Raphson
o false position @ secant
@ Ridders Pro
Pro o faster
@ robust i.e. always @ no need to bracket (just
converge. give a reasonable starting
Contra point)
@ usually slower Contra
convergence @ may not converge

@ require initial bracketing

See Matlab built in function fzero for equivalent tasks.

Eugeniy Mikhailov (W&M) Practical Computing Lecture08 10/10

Notes

	Secant method
	Newton-Raphson method
	Numerical derivative of a function
	Ridders method
	Root finding algorithms gotchas
	Root finding algorithms summary

