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Secant method

Notes
Xiy1 — X;
Xipo = Xip1 — F(Xipt) 1
i+2 i+1 ( i+1 ) f(Xi+1) _ f(XI')
Need to provide two starting points x; and xo.
Secant method converges with m = (1 ++/5)/2 ~ 1,618
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Newton-Raphson method
Notes
f(x;)
Need to provide a starting points x; and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).
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Numerical derivative of a function
Notes

Mathematical definition

/00 = im F(x + hf), — f(x)

The initial intent is to calculate it at very small h.
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Numerical derivative of a function

Mathematical definition Notes
. f(x+ h)—f(x)
4 p—
10 = fm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
100 = Jm ==
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
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Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
70 = Jm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
Let's be smarter. Recall Taylor series expansion
f/ f//
f(x+h) = f(x)+%h+ 2(|X)h2+-»-
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Numerical derivative of a function
Notes

Mathematical definition

/00 = im Fx + hf), — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

f(x+h) = f(x)+@h+ %hﬂ

So we can see
f(x + h) — f(x) ’(x)

flx) = = = () h

Here computed approximation and algorithm error.
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Numerical derivative of a function

Mathematical definition Notes

/00 = im F(x + h/)1 — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

.

f(x + h) = £(x) + @h + fﬂé!x)

So we can see
f(x + h) — f(x) 7(x)

flx) = o = () h

Here computed approximation and algorithm error. There is a range of
optimal h when both the round off and the algorithm errors are small.
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Derivative via Forward difference

£(x) = f(x + h,), — f(x) J

Notes

Algorithm error for small h

fl/(x)
5 h

Efd ~
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Derivative via Forward difference

Notes

£(x) = f(x + h,)7 — f(x) J

Algorithm error for small h

fl/(x)h

Efd ~

This is quite bad since error is proportional to h.
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Derivative via Forward difference

Notes
_ fix+h) = f(x)

() —h J

Algorithm error for small h

fl/(X)h

Efd ~

This is quite bad since error is proportional to h.

Example

f(x) = a+bx®
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Derivative via Forward difference

Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
f”(X)
= h
Efd 2
This is quite bad since error is proportional to h.
a+ bx?
f(x+h) = a+b(x+h)?=a+ bx®+2bxh+ b
Derivative via Forward difference
Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
fl/(x)
Efd = > h
This is quite bad since error is proportional to h.
f(x) = a+bx?
f(x+h) = a+b(x+ h)?=a+ bx?+2bxh+ bh?
f1(x) f(XL’)r_f(X) — 2bx+bh
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Derivative via Forward difference
Notes
£(x) = f(x + h) — f(x) J
h
Algorithm error for small h
7
Efg = f (X)h
This is quite bad since error is proportional to h.
f(x) = a+bx?
f(x+h) = a+b(x+h)?=a+ bx?+2bxh+ bh?
B = XEDZ10 h}) =10) _ a1 b
So for small x, the algorithm error dominates our approximation!
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Derivative via Central difference
Notes

fo(x) =

f(x + h) — f(x — h) J

2h
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Derivative via Central difference

f(x+h)—f(x—h
2h
Algorithm error
f(x)
Ecd X —— N
cd 6
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Ridders method - variation of false position

Solve f(x) = 0 with the following approximation of the function
f(x) = g(x) exp(—C(x — xr)), where g(x) = a+ bx i.e. linear.
In this case if g(xp) = 0 then f(xp) = 0, but g(x) = 0 is trivial to solve.

A

One can say that

g(x) = f(x)exp(C(x — x1)) = a+ bx J

Where we choose x, = x4
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Ridders method implementation
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@ bracket the root between x; and x», i.e. function must have
different signs at these points: f(xq) x f(x2) <0

@ find the mid point x3 = (X + X2)/2

@ find new approximation for the root

f3

B (x5 x1)
N

where fy = f(x1), & = f(x2), s = f(X3)
@ check if x4 satisfies convergence condition and we should stop
@ rebracket the root, i.e. assign new x; and xo, using old values
o one end of the bracket is x4 and f, = f(xs)

o the other is whichever of (x4, X2, X3) is closer to x4 and provides
proper bracket.

@ proceed to step 2
Nice features: x4 is guaranteed to be inside the bracket, convergence

of the algorithm is quadratic per cycle (m = 2). But it requires
evaluation of the f(x) twice for £ and f, thus it is-actually m =v/2.
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Root finding algorithm gotchas

X4 = X3 + sign(fy — )
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Notes

Notes

Notes

Notes




Root finding algorithm gotchas

Notes
Bracketing algorithms are
bulletproof and will always
converge, however false
position algorithm could be
slow.
f(x)
) Xy X3
x’\\i\&_i—i‘ﬂ X
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Root finding algorithm gotchas
Notes
Bracketing algorithms are Newton-Raphson and secant
bulletproof and will always algorithms are usually fast but
converge, however false starting points need to be close
position algorithm could be enough to the root.
slow.
f(x)
e \/\
Xy
X X3 } t T
| S i | Xz X
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Root finding algorithms summary
Notes
Root bracketing algorithms Non bracketing algorithms
@ bisection @ Newton-Raphson
o false position @ secant
@ Ridders Pro
Pro o faster
@ robust i.e. always @ no need to bracket (just
converge. give a reasonable starting
Contra point)
@ usually slower Contra
convergence @ may not converge

@ require initial bracketing

See Matlab built in function fzero for equivalent tasks.
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