
Boolean algebra, conditional statements, loops.

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 03

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 1 / 19

Boolean algebra

Variable of boolean type can have only two values
true

(Matlab use 1 to indicate it, actually everything but zero)

false

(Matlab uses 0)
There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false

(Matlab uses 0)
There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false (Matlab uses 0)

There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false (Matlab uses 0)

There are three logical operators which are used in boolean algebra

¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false (Matlab uses 0)

There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false (Matlab uses 0)

There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean algebra

Variable of boolean type can have only two values
true (Matlab use 1 to indicate it, actually everything but zero)
false (Matlab uses 0)

There are three logical operators which are used in boolean algebra
¬ - logic not, Matlab ˜

¬true = false
¬false = true

∧ - logic and, Matlab &

A ∧ B =

{
true, if A=true and B=true,
false,otherwise

∨ - logic or, Matlab |

A ∨ B =

{
false, if A=false and B=false,
true,otherwise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 2 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”

is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z =

false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean operators precedence in Matlab

If A = false, B = true, C = true

A|∼B&C

∼ has highest precedence, then &, and then |

A| ((∼B)&C)

Thus
A|∼B&C = false

“Cat is an animal and cat is not an animal”
is false statement

∼Z&Z = false

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 3 / 19

Boolean logic examples

There is an island, which is populated by two kind of people: liars and
truthlovers.

Liars always lie and never speak a word of truth.
Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be
the answer to your question “Who are you?”

The answer always will be “Truthlover”.

Now you see a person who answers to your question. “I am a liar.”
Is it possible?

This makes a paradox and should not ever happen on this island.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 4 / 19

Boolean logic examples

There is an island, which is populated by two kind of people: liars and
truthlovers.

Liars always lie and never speak a word of truth.
Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be
the answer to your question “Who are you?”

The answer always will be “Truthlover”.

Now you see a person who answers to your question. “I am a liar.”
Is it possible?

This makes a paradox and should not ever happen on this island.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 4 / 19

Boolean logic examples

There is an island, which is populated by two kind of people: liars and
truthlovers.

Liars always lie and never speak a word of truth.
Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be
the answer to your question “Who are you?”

The answer always will be “Truthlover”.

Now you see a person who answers to your question. “I am a liar.”
Is it possible?

This makes a paradox and should not ever happen on this island.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 4 / 19

Boolean logic examples

There is an island, which is populated by two kind of people: liars and
truthlovers.

Liars always lie and never speak a word of truth.
Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be
the answer to your question “Who are you?”

The answer always will be “Truthlover”.

Now you see a person who answers to your question. “I am a liar.”
Is it possible?

This makes a paradox and should not ever happen on this island.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 4 / 19

Matlab boolean logic examples

123.3 & 12=

1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 =

0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

123.3 & 12= 1
∼ 1232e-6 = 0

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

~B

ans =
0 1
0 0

B|~B

“To be or not to be”
The answer is to be

ans =
1 1
1 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 5 / 19

Matlab boolean logic examples

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000

B&A

ans =
1 0
0 1

A|~B

ans =
1 1
0 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 6 / 19

Matlab boolean logic examples

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000

B&A

ans =
1 0
0 1

A|~B

ans =
1 1
0 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 6 / 19

Matlab boolean logic examples

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000

B&A

ans =
1 0
0 1

A|~B

ans =
1 1
0 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 6 / 19

Matlab boolean logic examples

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000

B&A

ans =
1 0
0 1

A|~B

ans =
1 1
0 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 6 / 19

Matlab boolean logic examples

>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000

>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000

B&A

ans =
1 0
0 1

A|~B

ans =
1 1
0 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 6 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison operators

Math Matlab
= == double equal sign!
6= ∼=
< <
≤ <=
> >
≥ >=

x=[1,2,3,4,5]
x =

1 2 3 4 5

x >= 3

ans =
0 0 1 1 1

% choose such 'x' where x>=3
x(x >= 3)

ans =
3 4 5

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 7 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

Comparison with matrices

>> A=[1,2;3,4]
A =
1 2
3 4

>> B=[33,11;53,42]
B =
33 11
53 42

A>=2

ans =
0 1
1 1

A(A>=2)

ans =
3
2
4

B(A>=2)

Choose such
elements of B where
elements of A≥2

ans =
53
11
42

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 8 / 19

if-else-end statement

if expression
this part is executed
only if expression is
true
else
this part is executed
only if expression is
false
end

if hungry
buy some food
else
keep working
end

if (x>=0)
y=sqrt(x);

else
error('cannot do');

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 9 / 19

if-else-end statement

if expression
this part is executed
only if expression is
true
else
this part is executed
only if expression is
false
end

if hungry
buy some food
else
keep working
end

if (x>=0)
y=sqrt(x);

else
error('cannot do');

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 9 / 19

if-else-end statement

if expression
this part is executed
only if expression is
true
else
this part is executed
only if expression is
false
end

if hungry
buy some food
else
keep working
end

if (x>=0)
y=sqrt(x);

else
error('cannot do');

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 9 / 19

Common mistake in the ’if’ statement

if (x=y)
D=4;
Z=45;
C=12;

else
D=2;

end

the value of ’D’ is always 4, except the case when y=0
someone used assignment operator (=) instead of comparison (==)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 10 / 19

Common mistake in the ’if’ statement

if (x=y)
D=4;
Z=45;
C=12;

else
D=2;

end

the value of ’D’ is always 4, except the case when y=0

someone used assignment operator (=) instead of comparison (==)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 10 / 19

Common mistake in the ’if’ statement

if (x=y)
D=4;
Z=45;
C=12;

else
D=2;

end

the value of ’D’ is always 4, except the case when y=0
someone used assignment operator (=) instead of comparison (==)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 10 / 19

Short form of ’if-end’ statement

if expression
this part is executed
only if expression is
true
end

if won a million
go party
end

if (deviation<=0)
exit;

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 11 / 19

Short form of ’if-end’ statement

if expression
this part is executed
only if expression is
true
end

if won a million
go party
end

if (deviation<=0)
exit;

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 11 / 19

Short form of ’if-end’ statement

if expression
this part is executed
only if expression is
true
end

if won a million
go party
end

if (deviation<=0)
exit;

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 11 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’while’ statement

while expression
this part is executed
while expression is
true
end

while hungry
keep eating
end

i=1;
while (i<=10)

c=a+b;
z=c*4+5;
i=i+2;

end

while loop is extremely useful but they are not guaranteed to finish.
For a bit more complicated conditional statement and loop it is
impossible to predict if the loop will finish.

Yet another common mistake is

i=1;
while (i<=10)
c=a+b;

end

not updating the term leading to fulfillment of the while condition
Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 12 / 19

The ’for’ statement

for variable = expression
do something
end
In this case variable is assigned
consequently with columns of the
expression, and then statements inside of
the loop are executed

sum=0;
x=[1,3,5,6]
for v=x

sum=sum+v;
end

>> sum
sum =

15

for loops are guaranteed to complete after predictable number of
iterations (the amount of columns in expression).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 13 / 19

The ’for’ statement

for variable = expression
do something
end
In this case variable is assigned
consequently with columns of the
expression, and then statements inside of
the loop are executed

sum=0;
x=[1,3,5,6]
for v=x
sum=sum+v;

end

>> sum
sum =
15

for loops are guaranteed to complete after predictable number of
iterations (the amount of columns in expression).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 13 / 19

The ’for’ statement

for variable = expression
do something
end
In this case variable is assigned
consequently with columns of the
expression, and then statements inside of
the loop are executed

sum=0;
x=[1,3,5,6]
for v=x
sum=sum+v;

end

>> sum
sum =
15

for loops are guaranteed to complete after predictable number of
iterations (the amount of columns in expression).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 13 / 19

Example

S =
100∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ 99 + 100

S=0; i=1;
while(i<=100)

S=S+i;
i=i+1;

end

S=0;
for i=1:100

S=S+i;
end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 14 / 19

Example

S =
100∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ 99 + 100

S=0; i=1;
while(i<=100)
S=S+i;
i=i+1;

end

S=0;
for i=1:100

S=S+i;
end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 14 / 19

Example

S =
100∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ 99 + 100

S=0; i=1;
while(i<=100)
S=S+i;
i=i+1;

end

S=0;
for i=1:100
S=S+i;

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 14 / 19

Example
S =

∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0; k=1;
while((k<=100) & (k^-k >= 1e-5))

S=S+k^-k;
k=k+1;

end

>> S
S =

1.2913

S=0; k=1;
while(k<=100)

a_k=k^-k;
if (a_k < 1e-5)

break;
end
S=S+a_k;
k=k+1;

end

>> S
S =

1.2913

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 15 / 19

Example
S =

∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0; k=1;
while((k<=100) & (k^-k >= 1e-5))
S=S+k^-k;
k=k+1;

end

>> S
S =

1.2913

S=0; k=1;
while(k<=100)

a_k=k^-k;
if (a_k < 1e-5)

break;
end
S=S+a_k;
k=k+1;

end

>> S
S =

1.2913

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 15 / 19

Example
S =

∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0; k=1;
while((k<=100) & (k^-k >= 1e-5))
S=S+k^-k;
k=k+1;

end

>> S
S =
1.2913

S=0; k=1;
while(k<=100)

a_k=k^-k;
if (a_k < 1e-5)

break;
end
S=S+a_k;
k=k+1;

end

>> S
S =

1.2913

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 15 / 19

Example
S =

∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0; k=1;
while((k<=100) & (k^-k >= 1e-5))
S=S+k^-k;
k=k+1;

end

>> S
S =
1.2913

S=0; k=1;
while(k<=100)

a_k=k^-k;
if (a_k < 1e-5)

break;
end
S=S+a_k;
k=k+1;

end

>> S
S =

1.2913

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 15 / 19

Example
S =

∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0; k=1;
while((k<=100) & (k^-k >= 1e-5))
S=S+k^-k;
k=k+1;

end

>> S
S =
1.2913

S=0; k=1;
while(k<=100)

a_k=k^-k;
if (a_k < 1e-5)

break;
end
S=S+a_k;
k=k+1;

end

>> S
S =

1.2913

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 15 / 19

Same example with ’for’ loop and use of matrix ops

S =
∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0;
for k=1:100

a_k=k^-k;
if (a_k < 1e-5)
break;

end
S=S+a_k;

end

>> S
S =

1.2913

Often it is more elegant to use
built in Matlab matrix operators

>> k=1:100;
>> a_k=k.^-k;
>> S=sum(a_k(a_k>=1e-5))
S =

1.2913

Note
use of the choose
elements construct
built in sum function

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 16 / 19

Same example with ’for’ loop and use of matrix ops

S =
∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0;
for k=1:100
a_k=k^-k;
if (a_k < 1e-5)
break;

end
S=S+a_k;

end

>> S
S =

1.2913

Often it is more elegant to use
built in Matlab matrix operators

>> k=1:100;
>> a_k=k.^-k;
>> S=sum(a_k(a_k>=1e-5))
S =

1.2913

Note
use of the choose
elements construct
built in sum function

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 16 / 19

Same example with ’for’ loop and use of matrix ops

S =
∑
k=1

ak

While k<=100 and ak ≥ 10−5, where ak = k−k .

S=0;
for k=1:100
a_k=k^-k;
if (a_k < 1e-5)
break;

end
S=S+a_k;

end

>> S
S =
1.2913

Often it is more elegant to use
built in Matlab matrix operators

>> k=1:100;
>> a_k=k.^-k;
>> S=sum(a_k(a_k>=1e-5))
S =

1.2913

Note
use of the choose
elements construct
built in sum function

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 16 / 19

Interest rate related example

Suppose bank gave you 50% interest rate (let’s call it ’x’), and you put
one dollar in.
How much would you get at the end of the year?

one payment at the end of the year

M1 = 1 ∗ (1 + x) = 1 ∗ (1 + .5) = 1.5

interest payment every half a year

M2 = 1 ∗ (1 + x/2) ∗ (1 + x/2) = 1 ∗ (1 + .5/2)2 = 1.5625

interest payment every month

M12 = 1 ∗ (1 + x/12)12 = 1.6321

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 17 / 19

Interest rate related example

Suppose bank gave you 50% interest rate (let’s call it ’x’), and you put
one dollar in.
How much would you get at the end of the year?

one payment at the end of the year

M1 = 1 ∗ (1 + x) = 1 ∗ (1 + .5) = 1.5

interest payment every half a year

M2 = 1 ∗ (1 + x/2) ∗ (1 + x/2) = 1 ∗ (1 + .5/2)2 = 1.5625

interest payment every month

M12 = 1 ∗ (1 + x/12)12 = 1.6321

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 17 / 19

Interest rate related example

Suppose bank gave you 50% interest rate (let’s call it ’x’), and you put
one dollar in.
How much would you get at the end of the year?

one payment at the end of the year

M1 = 1 ∗ (1 + x) = 1 ∗ (1 + .5) = 1.5

interest payment every half a year

M2 = 1 ∗ (1 + x/2) ∗ (1 + x/2) = 1 ∗ (1 + .5/2)2 = 1.5625

interest payment every month

M12 = 1 ∗ (1 + x/12)12 = 1.6321

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 17 / 19

Interest rate related example

Now let’s find how your return on investment (MN) depends on the
number of payments per year

x=.5; N_max=100; N=1:N_max;
M=0*(N); % since N is vector M will be a vector too
for i=N

M(i)=(1+x/i)^i;
end
plot(N,M,'-'); set(gca,'FontSize',24);
xlabel('N, number of payments per year');
ylabel('M_n, return on investment'); % note M_n use
title('Return on investment vs number of payments');

Of course we do not need computer to show that M∞ = ex = 1.6487
but we need it to calculate something like
M1001 −M1000 = 2.0572× 10−7

Bonus question: can you calculate M without use of loops?

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 18 / 19

Interest rate related example

Now let’s find how your return on investment (MN) depends on the
number of payments per year

x=.5; N_max=100; N=1:N_max;
M=0*(N); % since N is vector M will be a vector too
for i=N

M(i)=(1+x/i)^i;
end
plot(N,M,'-'); set(gca,'FontSize',24);
xlabel('N, number of payments per year');
ylabel('M_n, return on investment'); % note M_n use
title('Return on investment vs number of payments');

Of course we do not need computer to show that M∞ = ex = 1.6487
but we need it to calculate something like
M1001 −M1000 = 2.0572× 10−7

Bonus question: can you calculate M without use of loops?

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 18 / 19

Interest rate related example

0 20 40 60 80 100
1.5

1.55

1.6

1.65

N, number of payments per year

M
n
,

re
tu

rn
 o

n
 i
n

v
e

s
tm

e
n

t
Return on investment vs number of payments

Eugeniy Mikhailov (W&M) Practical Computing Lecture 03 19 / 19

	Boolean algebra
	Comparison operators
	Conditional statements
	Loops
	Series

