Introduction to Matlab

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 02

Matlab variable types

Matlab variable types

integer

• 123, -345, 0

Matlab variable types

- integer
 - 123, -345, 0
- real or float
 - 12.2344
 - 5.445454
 - engineering notation
 - $4.2323e-9 = 4.2323 \times 10^{-9}$

Notes	
-	
Nata	
Notes	
Notes	
-	
Notes	
Notes	

Notes integer • 123, -345, 0 real or float • 12.2344 • 5.445454 engineering notation • $4.2323e-9 = 4.2323 \times 10^{-9}$ • imaginary $1i = \sqrt{-1}$ • 34.23+21.21i • (1+1i) * (1-1i) = 2Eugeniy Mikhailov (W&M) Matlab variable types Notes integer 123, -345, 0 real or float • 12.2344 • 5.445454 engineering notation \bullet 4.2323e-9 = 4.2323×10^{-9} • imaginary $1i = \sqrt{-1}$ • 34.23+21.21i \bullet (1+1i) * (1-1i) = 2 • strings (put your words inside apostrophes) handy for file names and messages • 'programming is fun' • s='Williamsburg' Eugeniy Mikhailov (W&M) Lecture 02 Some built in constants and functions Notes \bullet $\pi = 3.141592653589793238462643383279502 · · ·$ • use pi trigonometry functions By default angle is in radians But can be done in degrees • sin, cos, tan, cot • sind, cosd, tand, cotd • asin, acos, atan, acot • asind, acosd, atand, acotd $\sin(pi/2)=1$ sind(90) = 1 hyperbolic functions • sinh, cosh, tanh, coth \bullet asinh, acosh, atanh, acoth logarithms • natural log • base of 10 log10 power • x^y use x^y or alternatively power (x, y)• e^y use $\exp(y)$ Assignment operator Notes x = 1.2 + 3.4

D > 40 > 42 > 42 > 2 990

Eugeniy Mikhailov (W&M)

Matlab variable types

Practical Computing

Lecture 02

4 / 27

Assignment operator

```
x = 1.2 + 3.4
```

Despite the look = is not the equality operator.

= is the assignment operator.

```
>> x = 1.2 + 3.4
x =
4.6000
```

Eugenly Mikhailov(W&M) Practical Computing Lecture 02 4/2:

Assignment operator

x = 1.2 + 3.4

Despite the look = is not the equality operator.

= is the assignment operator.

```
>> x = 1.2 + 3.4
x = 4.6000
```

The expression above should be read as

- evaluate expression at the right hand side of equality symbol
- assign the result of the RHS to the variable on the left hand side
- ullet now variable x holds the value 4 . 6

We are free to use the value of the variable $\mathbf x$ in any further expressions

```
>> x+4.2
ans =
8.8000
```

Efficient editing - Tab-completition

Once you typed some expressions in "Command window"

- type couple of first symbols of variable or function name
- hit tab and you will get
 - either fully typed name (if it is unique)
 - or little chart with choices
 - use <up> or <down> arrows to choose
 - alternatively <Ctrl-p>, <Ctrl-n>
 - then hit <enter> to make your choise

Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 5/2

Help related commands

These are the most important commands

- docsearch word
 - $\bullet\,$ will search for word in the help files and show up matched help files
 - example: docsearch trigonometry
- help name
 - output short help text into "Command window" about function/method named name
 - example: help sin
- doc name
 - show a reference page about function/method named name in the help browser
 - usually has more information in comparison to help name
 - example: doc sin

Notes		
Notes		
_		
Notes		
Notes		

Operators Precedence

Look at the following Matlab expression

 $-2^4*5 + \tan(pi/8+pi/8)^2$

Guess the answer.

4 m > 4 m > 4 E > 4 E > E 9 Q G

Lagarily Milatalov (Wall)

Practical Computing

Lecture 02 7 / 27

Operators Precedence

Look at the following Matlab expression

 $-2^4*5 + \tan(pi/8+pi/8)^2$

Guess the answer.

 $-(2^4)*5 + (tan((pi/8+pi/8)))^2$

Eugeniy Mikhailov (W&M)

Practical Computing

Operators Precedence

Look at the following Matlab expression

 $-2^4*5 + \tan(pi/8+pi/8)^2$

Guess the answer.

 $- (2^4)*5 + (tan((pi/8+pi/8)))^2$

 $- (16)*5 + (tan((pi/4)))^2$

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 02 7 /

Operators Precedence

Look at the following Matlab expression

 $-2^4*5 + \tan(pi/8+pi/8)^2$

Guess the answer.

 $-(2^4)*5 + (tan((pi/8+pi/8)))^2$

 $- (16)*5 + (tan((pi/4)))^2$

 $-80 + (1)^2$

(D) (B) (E) (E) (E) (9)

Eugeniy Mikhailov (W&M) Practical Comp

7/27

Notes

Notes

Notes

Notes

Operators Precedence

Look at the following Matlab expression

```
-2^4*5 + \tan(pi/8+pi/8)^2
```

Guess the answer.

$$- (2^4)*5 + (tan((pi/8+pi/8)))^2$$

$$- (16)*5 + (tan((pi/4)))^2$$

$$-80 + (1)^2 = -80 + 1$$

Notes

Notes

Notes

Operators Precedence

Look at the following Matlab expression

$$-2^4*5 + \tan(pi/8+pi/8)^2$$

Guess the answer.

$$- (2^4)*5 + (tan((pi/8+pi/8)))^2$$

$$- (16)*5 + (tan((pi/4)))^2$$

$$-80 + (1)^2 = -80 + 1 = -79$$

Operators Precedence

Look at the following Matlab expression

$$-2^4*5 + \tan(pi/8+pi/8)^2$$

Guess the answer.

$$- (2^4)*5 + (tan((pi/8+pi/8)))^2$$

$$- (16)*5 + (tan((pi/4)))^2$$

$$-80 + (1)^2 = -80 + 1 = -79$$

Rule of thumb: if not sure use extra parenthes

Operators Precedence

Look at the following Matlab expression

$$-2^4*5 + \tan(pi/8+pi/8)^2$$

Guess the answer.

Eugeniy Mikhailov (W&M)

$$- (2^4)*5 + (tan((pi/8+pi/8)))^2$$

$$- (16)*5 + (tan((pi/4)))^2$$

$$-80 + (1)^2 = -80 + 1 = -79$$

Rule of thumb: if not sure use extra parenthes

- Read more by executing doc precedent
- or searching for 'precedence' in the help b

!)))^2	
= -79	
es ()	
Lecture 02 7/27	
	Notes
/8)^2	
pi/8)))^2	
1)))^2	
= -79	
es ()	
ce	
prowser.	
 ←□ → ←점 → ← 본 → 전 → 전 へ ○ Lecture 02 7/27 	

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix
 - also referred as array or table
- ullet a number is the case of 1 imes 1 matrix

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix
 - also referred as array or table
- \bullet a number is the case of 1 \times 1 matrix

Let's create a 3×5 matrix (3 rows and 5 columns)

This is not the only way, but it is one which make sure that matrix is filled with zeros $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

Note: it is possible to have more than 2 dimensional arrays.

>> Mz(2,	4)=1	% 2nd r	OW,	4th column
Mz =				
0	0	0	0	0
0	0	0	1	0
0	0	0	0	0

Matrix elements assignment						
>>	Mz(2,4)	=1 %	2nd ro	ow, 4t1	h column	
Mz	=					
	0	0	0	0	0	
	0	0	0	1	0	
	0	0	0	0	0	
>>	Mz(3,5)	=4 %	3rd ro	ow, 5t1	h column	
Mz	=					
	0	0	0	0	0	
	Ο	Ο	Ω	1	N	

0

Eugeniy Mikhailov (W&M)

0

Practical Computing	Lecture 02	9/27
	(D) (B) (E) (E) E	996
0 4		

Notes		
Notes		
Notes		
Notes		

Alternative way to assign a matrix

- comma separates column elements
- semicolon separates row elements

Notice . . . mark, which means that input continues on the next line

		4 D > 4 B > 4 E > 4 E > - E	200
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 02	10 / 27
Strength of Matlat)		

Native matrix operations

Mz =					
0 0 0 0 0	>> Mz	+5			
0 0 0 1 0	ans =				
0 0 0 0 4	5	5	5	5	5
	5	5	5	6	5
	5	5	5	5	9

		←□→ ←□→ ←□→ ←□→ □	200
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 02	11 / 27
Strength of Matlal	b		

Native matrix operations

Mz =					
0 0 0 0 0	>> Mz	+5			
0 0 0 1 0	ans =				
0 0 0 0 4	5	5	5	5	5
	5	5	5	6	5
	5	5	5	5	9
	>> Mz	*2			
	ans =				
	0	0	0	0	0
	0	0	0	2	0
	0	0	0	0	8

		(0) (0) (2) (2) (2)	200
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 02	11 / 27
More example on	matrices operation	าร	

Mz =	>> 1	Mz+Mz				
0 0 0 0 0	ans	=				
0 0 0 1 0	0	0	0	0	0	
0 0 0 0 4	0	0	0	2	0	
	0	0	0	0	8	

Notes	
Notes	
-	
Notes	
Notes	
	
Notes	

More example on matrices operations

>>	>> Mz+Mz									
ans	=									
0	0	0	0	0						
0	0	0	2	0						
0	0	0	0	8						

Matrix multiplication according to the linear algebra rules

Here Mz' corresponds to complex conjugate transposed matrix Mz, i.e. $Mz'(i,j) = Mz(j,i)^*$

Eugeniy Mikhailov (W&M)

Practical Computing

ecture 02 12 / 27

Matrix as a function argument

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

(W&M) Practical Computing

Lecture 02 13 / 27

Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- m × 1 column vector
- 1 × m just a vector

Practical Computing Lecture 02 14/27

Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- $m \times 1$ column vector
- $1 \times m$ just a vector

To create a vector

Eugeniy Mikhailov (W&M)

>>	% use	comma	to sep	arate	column	elemen	nts	
>>	v = [1,	2, 3,	4, 5,	6, 7,	8]			
v =	=							
1	2	3	4	5	6	7	8	
>>	% alte	ernati	vely yo	u can	use spa	aces		
>>	$v = [1 \ 2]$	2 3 4	5 6 7 8];				
>>	% or r	mix of	these	two no	otation:	s (NOT	RECOMME	NDED)
>>	$v = [1 \ 2]$	2 3, 4	, 5, 6	7 8]				
v =	=							
1	2	3	4	5	6	7	8	
						4 D > 4 B	0.485485	₹ 200

geniy Mikhailov (W&M) Practical Compu

_	_		
cture	02	14/	

Notes			
Notes			
Notes			

NOIGS			

Notes			

Column vector

Construction of column vector

```
>> vc=[1; 2; 3]
% use semicolon to separate row elements
vc =
1
2
3
```

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

```
>> vc=[1; 2; 3];
>> % note that ; after a statement suppresses output
>> Mc=[vc, vc, vc]
Mc =
1
      1
2
      2
            2
3
      3
            3
```

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

```
>> vc=[1; 2; 3];
>> % note that ; after a statement suppresses output
>> Mc=[vc, vc, vc]
Mc =
1
      1
            1
2
      2
            2
3
       3
```

v =							
1	2	3	4	5	6	7	8
>>]	Mv=[v;	2*v;	3*v]				
Mv :	=						
1	2	3	4	5	6	7	8
2	4	6	8	10	12	14	16
3	6	9	12	15	18	21	24

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

```
[ start, start+1*increment, ... , start+m*increment]
where
m=1, 2, 3, 4, \dots and
```

 $\min(\text{start}, \text{stop}) \le \text{start} + \text{m*increment} \le \max(\text{start}, \text{stop})$

Eugeniy Mikhailov (W&M)

Notes

Notes

Notes

Notes

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

```
where m=1, 2, 3, 4, ... and min(start, stop) \leq start + m*increment \leq with start stop) \leq start + m*increment \leq max(start, stop) \leq v=5:2:11 v = 5 7 9 11
```

4 D > 4 B > 4 E > 4 E > E 9 Q @

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 02 17 / 2

Notes

Notes

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

It is also possible to have negative increment

9 11

```
>> v2=12:-3:1
v2 =
12 9 6 3
```

Eugeniy Mikhailov (W&M)

5 7

Practical Computing

Lecture 02

Colon (:) operator continued

One can use form start:stop with the default increment = 1

```
>> v1=1:5
v1 =
1 2 3 4 5
```

Colon (:) operator continued

Practical Computing

Lecture 02

--- () -|-- ---

One can use form start:stop with the default increment = 1

```
>> v1=1:5
v1 =
1 2 3 4 5
```

But there are some peculiarities:

```
>> v3=5:1
v3 =
Empty matrix: 1-by-0
```

produces somewhat unexpected result, naively you would expect ${\tt v3=5}.$ But there are some built extra conditions, see them by executing

>> help :

∢ □

4 D > 4 B > 4 E > 4 E > E + 9 9

Notes

Notes

18 / 27

Slicing matrices

It is handy to choose a subset (block) from the matrix We have a matrix Mv with size 3×8 and we want to choose all elements from columns 2,5,6

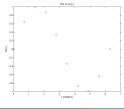
```
>> Mv
Mv =
1
          3
                4
                     5
                          6
                                      8
     4
          6
               8
                    10
                         12
                               14
                                     16
3
               12
                    15
                         18
                               21
>> Mv(:,[2,5,6])
ans =
2
          6
    10
         12
6 15
         18
```

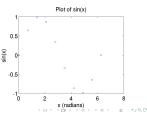
The meaning of the: now is choose all. Notice also that we use vector to specify desired columns

Eugeniy Mikhailov (W&M) **Plotting**

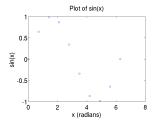
Suppose you have a vector with values of x coordinates and we want to plot sin(x).

```
>> x=linspace(0,2*pi,10)
x = 0.6981
             1.3963
                       2.0944
                                2.7925
                                         3.4907
4.1888 4.8869 5.5851 6.2832
>> y=sin(x)
0
    -0.8660 -0.9848 -0.6428 -0.0000
>> plot(x,y,'o') % alternatively plot(x,sin(x),'o')
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
```


For 3D plots, please see help files for plot3, mesh, surf.


Increasing font size for plots

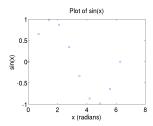
Default font size


Increased font size

```
>> plot(x,y,'o')
                           >> plot(x,y,'o')
>> % default font size
                           >> set(gca,'FontSize',24);
>> xlabel('x (radians)')
                           >> xlabel('x (radians)')
>> ylabel('sin(x)')
                           >> ylabel('sin(x)')
>> title('Plot of sin(x)') >> title('Plot of sin(x)')
```


Saving plots

To save the figure use print.


```
>> print('-dpdf', 'sin_of_x')
```

This will generate file $sin_of_x.pdf$ notice automatic file extension addition.

									- ^	^	00/0
<	Þ	40	Þ	4	2	Þ	4	3	Þ	3	200

Notes	
Notes	
Notes	
Notes	
Notes	
-	

Saving plots

To save the figure use print.

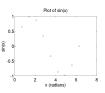
```
>> print('-dpdf', 'sin_of_x')
```

This will generate file $sin_of_x.pdf$ notice automatic file extension

The -d switch designates the output format:

pdf, ps, eps, png... Eugeniy Mikhailov (W&M)

Saving plots continued


Matlab still generates pdf with a lot of empty space unsuitable for use as figures. It is better to save into $\ensuremath{\mathtt{eps}}$ format and then convert it to a desired one.

```
>> print('-deps', 'sin_of_x')
```

Or generate a png file which can be directly used with pdflatex

>> print('-dpng', '-r100', 'sin_of_x')

By default figure size is 8×6 inches, the -rswitch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be 800 \times 600 pixels.

Notes

Notes

Notes

Array element-wise arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with . (dot/period).

• .* element-wise multiplication

>> x=1:3x = 13 >> % x*x % will generate an error >> x.*x % equivalent to $x.^2$ (see below) ans = 1 4

Array element-wise arithmetic operat

There are special arithmetic operators which ap

matrices (disregard linear algebra rules), they si • . * element-wise multiplication

>> x=1:3 3 x = 1>> % x*x % will generate an err $>> x.*x % equivalent to x.^2 (see$ 4 ans = 1

• . ^ element-wise power operator

Eugeniy Mikhailov (W&M)

>> x.^2 ans = 1

Lecture 02 24/27	
pplied to the elements of tart with . (dot/period).	Notes
ror ee below)	
Lecture 02 24/27	

Array element-wise arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with . (dot/period).

• . * element-wise multiplication

• . ^ element-wise power operator

./ element-wise division

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 02 24 / 27

Array element-wise arithmetic operators continued

Linear algebra rules

>> m*m				
ans	=			
30	36	42		
66	81	96		
102	126	150		

Element-wise operation

>> m	.*m		
ans	=		
1	4	9	
16	25	36	
49	64	81	

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 02

Array element-wise arithmetic operator . ^

Linear algebra rules

Element-wise operation

ov (W&M) Practical Computing Lecture 02 26/3

Array element-wise arithmetic operator . /

Linear algebra rules

>> n	n/m %	unity	matrix
ans	=		
1	0	0	
0	1	0	
0	0	1	

Element-wise operation

>> m./n	n %matrix	of	ones
ans =			
1 1	. 1		
1 1	. 1		
1 1	. 1		

0 P 4 B P 4 E P 4 B P 4 C

Notes	
Notes	
Notes	
Notes	