
Computers and programming languages
introduction

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 01

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 1 / 19

Class goals and structure

Primary purpose
learn to to specify a problem
break it up into algorithmic pieces
implement a program to execute these pieces

learn Matlab

Structure
first we learn basics of Matlab as programming language (couple
weeks)
then learn numerical analysis basics while keep mastering Matlab

Weekly schedule
Monday, Wednesday: normal lecture hours
Friday: short lecture, lab, hands on

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 2 / 19

Class goals and structure

Primary purpose
learn to to specify a problem
break it up into algorithmic pieces
implement a program to execute these pieces

learn Matlab

Structure
first we learn basics of Matlab as programming language (couple
weeks)
then learn numerical analysis basics while keep mastering Matlab

Weekly schedule
Monday, Wednesday: normal lecture hours
Friday: short lecture, lab, hands on

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 2 / 19

Class goals and structure

Primary purpose
learn to to specify a problem
break it up into algorithmic pieces
implement a program to execute these pieces

learn Matlab

Structure
first we learn basics of Matlab as programming language (couple
weeks)
then learn numerical analysis basics while keep mastering Matlab

Weekly schedule
Monday, Wednesday: normal lecture hours
Friday: short lecture, lab, hands on

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 2 / 19

Building blocks

To learn a language we need to practice and use this language
a lot of weight on homeworks and projects

No final exam
Final project defense instead
December 6 at 14:00 in Small Hall 111

Grades contribution
Homeworks: 15%
Midterm projects: 60%
Final project: 25%

Assignments and lecture notes will be posted on my homepage

http://physics.wm.edu/∼evmik/

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 3 / 19

Building blocks

To learn a language we need to practice and use this language
a lot of weight on homeworks and projects

No final exam
Final project defense instead
December 6 at 14:00 in Small Hall 111

Grades contribution
Homeworks: 15%
Midterm projects: 60%
Final project: 25%

Assignments and lecture notes will be posted on my homepage

http://physics.wm.edu/∼evmik/

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 3 / 19

Building blocks

To learn a language we need to practice and use this language
a lot of weight on homeworks and projects

No final exam
Final project defense instead
December 6 at 14:00 in Small Hall 111

Grades contribution
Homeworks: 15%
Midterm projects: 60%
Final project: 25%

Assignments and lecture notes will be posted on my homepage

http://physics.wm.edu/∼evmik/

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 3 / 19

Building blocks

To learn a language we need to practice and use this language
a lot of weight on homeworks and projects

No final exam
Final project defense instead
December 6 at 14:00 in Small Hall 111

Grades contribution
Homeworks: 15%
Midterm projects: 60%
Final project: 25%

Assignments and lecture notes will be posted on my homepage

http://physics.wm.edu/∼evmik/

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 3 / 19

Building blocks

To learn a language we need to practice and use this language
a lot of weight on homeworks and projects

No final exam
Final project defense instead
December 6 at 14:00 in Small Hall 111

Grades contribution
Homeworks: 15%
Midterm projects: 60%
Final project: 25%

Assignments and lecture notes will be posted on my homepage

http://physics.wm.edu/∼evmik/

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 3 / 19

Homeworks and midterm project deadlines

due date: corresponding Monday at 1:00pm for email submission
report to be submitted via email as well as a carbon copy to be
collected at the beginning of the Monday class

If there is no listings and no algorithms/data files, you will get zero
points.
Late submission penalties
For each consequent day after the due date there will be a penalty
(10% out of maximum possible score). Even if submission happens 1
minute after the due date, it holds 1 day penalty.
Projects homework preparation recommendation
Do not wait till the last day to finish your exercise. Programs almost
never work at the first try and require quite a lot of time to debug.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 4 / 19

Collaboration and grading scale

Collaborations are not permitted for homeworks.
Projects to be done in group of 2 or 3 persons. This is the time to
actively discuss and cooperate. Only one report per such group is
needed.

But everyone is expected to have a full understanding of the project.
Be ready to answer questions related to the project without your
group support.

Grading scale

Grade percentage Grade percentage Grade percentage
A 94-100 A- 90-94

B+ 87-90 B 84-87 B- 80-84
C+ 77-80 C 74-77 C- 70-74
D+ 67-70 D 64-67 D- 60-64
F <60

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 5 / 19

Recommended reading

Everything required for this class will be provided during lecture times.
Two optional books for your own references.
A short Matlab reference book: "Getting Started with MATLAB: A
Quick Introduction for Scientists and Engineers" bu Rudra Pratap

ISBN-10: 0199731241
ISBN-13: 978-0199731244

A more extended treatment of numerical algorithm with Matlab:
"Numerical Methods in Engineering with MATLAB" by Jaan Kiusalaas

ISBN-10: 0521191335
ISBN-13: 978-0521191333

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 6 / 19

Early history of computing

Computers use to be humans
Computing aids - no programing possible

abacus
sliding ruler
pre-calculated tables of function (logarithm, trigonometry . . .)
mechanical calculators

Modern computers appear at 1946 -ENIAC (Electronic Numerical
Integrator And Computer)

weight: 30 tons
cost: $500,000
($6,000,000 adjusted)
power consumption:
150 kW

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 7 / 19

Early history of computing

Computers use to be humans

Computing aids - no programing possible
abacus
sliding ruler
pre-calculated tables of function (logarithm, trigonometry . . .)
mechanical calculators

Modern computers appear at 1946 -ENIAC (Electronic Numerical
Integrator And Computer)

weight: 30 tons
cost: $500,000
($6,000,000 adjusted)
power consumption:
150 kW

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 7 / 19

Early history of computing

Computers use to be humans
Computing aids - no programing possible

abacus
sliding ruler
pre-calculated tables of function (logarithm, trigonometry . . .)
mechanical calculators

Modern computers appear at 1946 -ENIAC (Electronic Numerical
Integrator And Computer)

weight: 30 tons
cost: $500,000
($6,000,000 adjusted)
power consumption:
150 kW

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 7 / 19

Early history of computing

Computers use to be humans
Computing aids - no programing possible

abacus
sliding ruler
pre-calculated tables of function (logarithm, trigonometry . . .)
mechanical calculators

Modern computers appear at 1946 -ENIAC (Electronic Numerical
Integrator And Computer)

weight: 30 tons
cost: $500,000
($6,000,000 adjusted)
power consumption:
150 kW

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 7 / 19

ENIAC vs modern PC

Speed measured in operations per second

ENIAC
5000 additions
357 multiplications
38 divisions

Athlon 3000+ (2GHz)
70,000,000 additions
70,000,000 multiplications
50,000,000 divisions
15,000,000 sin operations

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 8 / 19

ENIAC vs modern PC

Speed measured in operations per second

ENIAC
5000 additions
357 multiplications
38 divisions

Athlon 3000+ (2GHz)
70,000,000 additions
70,000,000 multiplications
50,000,000 divisions
15,000,000 sin operations

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 8 / 19

Common features of modern computer

Central Processing Unit (CPU)
memory

holds data and executable code

data input and output
same hardware can do different calculation sequences
usually use binary system
programmable for any general task

Speed measured in FLOPS (the number of floating point operations
per second) which usually proportional to the clock frequency.

Different computer architectures (AMD, Mac, Intel, ARM . . .) have
different proportionality coefficient.

My 2 GHz AMD PC can do about 50 MegaFLOPS

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 9 / 19

Common features of modern computer

Central Processing Unit (CPU)
memory

holds data and executable code

data input and output
same hardware can do different calculation sequences
usually use binary system
programmable for any general task

Speed measured in FLOPS (the number of floating point operations
per second) which usually proportional to the clock frequency.

Different computer architectures (AMD, Mac, Intel, ARM . . .) have
different proportionality coefficient.

My 2 GHz AMD PC can do about 50 MegaFLOPS

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 9 / 19

Common features of modern computer

Central Processing Unit (CPU)
memory

holds data and executable code

data input and output
same hardware can do different calculation sequences
usually use binary system
programmable for any general task

Speed measured in FLOPS (the number of floating point operations
per second) which usually proportional to the clock frequency.

Different computer architectures (AMD, Mac, Intel, ARM . . .) have
different proportionality coefficient.

My 2 GHz AMD PC can do about 50 MegaFLOPS

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 9 / 19

Common features of modern computer

Central Processing Unit (CPU)
memory

holds data and executable code

data input and output
same hardware can do different calculation sequences
usually use binary system
programmable for any general task

Speed measured in FLOPS (the number of floating point operations
per second) which usually proportional to the clock frequency.

Different computer architectures (AMD, Mac, Intel, ARM . . .) have
different proportionality coefficient.

My 2 GHz AMD PC can do about 50 MegaFLOPS

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 9 / 19

Computers . . .

Computers are incredibly fast,

accurate, and stupid. Humans
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and

stupid. Humans
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid.

Humans
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid. Humans
beings are incredibly slow,

inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid. Humans
beings are incredibly slow, inaccurate,

and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid. Humans
beings are incredibly slow, inaccurate, and brilliant.

Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid. Humans
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Computers . . .

Computers are incredibly fast, accurate, and stupid. Humans
beings are incredibly slow, inaccurate, and brilliant. Together
they are powerful beyond imagination.

Leo Cherne (1969)

Thus

Computer is not a substitute for a brain

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 10 / 19

Programming languages overview

There are hundreds programming languages.

Super low-level language
binary code

the only thing which computers understand
each instruction looks like a number
usually it is not human readable

low-level languages
assembler (human readable binary code translation)
Fortran, LISP, C, C++, Forth

higher-level languages
Tcl, Java, JavaScript, PHP, Perl, Python

Unfortunately none of them serves all needs.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 11 / 19

Programming languages overview

There are hundreds programming languages.

Super low-level language
binary code

the only thing which computers understand
each instruction looks like a number
usually it is not human readable

low-level languages
assembler (human readable binary code translation)
Fortran, LISP, C, C++, Forth

higher-level languages
Tcl, Java, JavaScript, PHP, Perl, Python

Unfortunately none of them serves all needs.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 11 / 19

Programming languages overview

There are hundreds programming languages.

Super low-level language
binary code

the only thing which computers understand
each instruction looks like a number
usually it is not human readable

low-level languages
assembler (human readable binary code translation)
Fortran, LISP, C, C++, Forth

higher-level languages
Tcl, Java, JavaScript, PHP, Perl, Python

Unfortunately none of them serves all needs.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 11 / 19

Programming languages overview

There are hundreds programming languages.

Super low-level language
binary code

the only thing which computers understand
each instruction looks like a number
usually it is not human readable

low-level languages
assembler (human readable binary code translation)
Fortran, LISP, C, C++, Forth

higher-level languages
Tcl, Java, JavaScript, PHP, Perl, Python

Unfortunately none of them serves all needs.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 11 / 19

Programming languages overview

There are hundreds programming languages.

Super low-level language
binary code

the only thing which computers understand
each instruction looks like a number
usually it is not human readable

low-level languages
assembler (human readable binary code translation)
Fortran, LISP, C, C++, Forth

higher-level languages
Tcl, Java, JavaScript, PHP, Perl, Python

Unfortunately none of them serves all needs.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 11 / 19

Programming languages implementations

Compiled
generate
computers binary
code

it takes time

faster execution
time
a bit harder to
debug
if you find and
fixed an error
(bug) you need to
recompile
Examples:
Assembler, C,
C++, Fortran

just-in-time
compilation

middle ground
compile once to
bytecode
cross-platform
Examples: Java,
Python

Interpreted
No compilation
interpretation to
machine code per
instruction
slow (since you
have to interpret
same instruction
over and over)
cross-platform
code
Examples: Perl,
JavaScript, Lua,
Php, Tcl, Shells,
Matlab

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 12 / 19

Programming languages implementations

Compiled
generate
computers binary
code

it takes time

faster execution
time
a bit harder to
debug
if you find and
fixed an error
(bug) you need to
recompile
Examples:
Assembler, C,
C++, Fortran

just-in-time
compilation

middle ground
compile once to
bytecode
cross-platform
Examples: Java,
Python

Interpreted
No compilation
interpretation to
machine code per
instruction
slow (since you
have to interpret
same instruction
over and over)
cross-platform
code
Examples: Perl,
JavaScript, Lua,
Php, Tcl, Shells,
Matlab

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 12 / 19

Programming languages implementations

Compiled
generate
computers binary
code

it takes time

faster execution
time
a bit harder to
debug
if you find and
fixed an error
(bug) you need to
recompile
Examples:
Assembler, C,
C++, Fortran

just-in-time
compilation

middle ground
compile once to
bytecode
cross-platform
Examples: Java,
Python

Interpreted
No compilation
interpretation to
machine code per
instruction
slow (since you
have to interpret
same instruction
over and over)
cross-platform
code
Examples: Perl,
JavaScript, Lua,
Php, Tcl, Shells,
Matlab

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 12 / 19

Matlab as a language of choice

Matlab (matrix laboratory)

Pro
interpreted

easy to use and debug

quite fast if done right,
since main functions are
compiled
large selection of scientific
related functions
built in graphics/plotting
Turing complete (you can
do with it everything which
computer is capable)
designed to do numerical
calculations

Contra
interpreted

could be slow if
programmed inefficiently

Not free to modify internals
quite fast since for main
functions it calls a
compiled code
rudimentary symbolic
calculations

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 13 / 19

Matlab as a language of choice

Matlab (matrix laboratory)
Pro

interpreted
easy to use and debug

quite fast if done right,
since main functions are
compiled
large selection of scientific
related functions
built in graphics/plotting
Turing complete (you can
do with it everything which
computer is capable)
designed to do numerical
calculations

Contra
interpreted

could be slow if
programmed inefficiently

Not free to modify internals
quite fast since for main
functions it calls a
compiled code
rudimentary symbolic
calculations

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 13 / 19

Matlab as a language of choice

Matlab (matrix laboratory)
Pro

interpreted
easy to use and debug

quite fast if done right,
since main functions are
compiled
large selection of scientific
related functions
built in graphics/plotting
Turing complete (you can
do with it everything which
computer is capable)
designed to do numerical
calculations

Contra
interpreted

could be slow if
programmed inefficiently

Not free to modify internals
quite fast since for main
functions it calls a
compiled code
rudimentary symbolic
calculations

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 13 / 19

Matlab: where to get

Free for W&M students
available for Mac and Windows
visit http://www.wm.edu/offices/it/a-z/software/
go to ‘Licensed software”
choose appropriate “Math & Statistics” Software section
download Matlab

Please, do it before this Friday class, also do not forget to bring your
notebooks/laptops with you for Friday classes.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 14 / 19

http://www.wm.edu/offices/it/a-z/software/

Matlab: where to get

Free for W&M students
available for Mac and Windows
visit http://www.wm.edu/offices/it/a-z/software/
go to ‘Licensed software”
choose appropriate “Math & Statistics” Software section
download Matlab

Please, do it before this Friday class, also do not forget to bring your
notebooks/laptops with you for Friday classes.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 14 / 19

http://www.wm.edu/offices/it/a-z/software/

Discretization - The main weakness of computers

coming from resources limitation
For example:

1/6 = 0.1666666666666666 · · ·
But computer has limited amount of memory. Thus it cannot hold
infinite amount of digits and has to truncate somewhere.
Let’s say it can hold only 4 significant digits.

1/6 = 0.1667c

This called round off error due to truncation/rounding. Then for
computer

1/6 = 1/5.999

or
0.1667123 = 0.1667321 = 0.1667222 = 0.1667111

or even more interesting

20 × (1/6)− 20/6 = 20 × 0.1667 − 3.333 = 3.334 − 3.333 = 10−4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 15 / 19

Binary representation - why PHYS 256

Modern general purpose computers use binary representation
bit is a smallest unit of information
bit value is either 0 or 1

Bit is too small so we use byte
byte = 8 bits stitched together
byte can represent values in the range −128 · · · 0 · · · 127
the major (the left most) bit usually holds the sign (s) of the
number

0: means positive
1: means negative

010010102

decimal representation 010010102 =
(−1)0 × (0×20 +1×21 +0×22 +1×23 +0×24 +0×25 +1×26)
= 2 + 8 + 64 =74

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 16 / 19

Binary representation (cont.)

Byte is clearly to small to be used for real life computation.
Matlab uses 8 bytes or 64 bits for number representation

available range −2,147,483,648 · · · 0 · · · 2,147,483,647
you can find this range by executing intmin and intmax

notice that you cannot use numbers outside of this range
2,147,483,647 + 10 = 2,147,483,647
this is called overflow error

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 17 / 19

Float numbers representation

What to do if you need to store a float number?

For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Float numbers representation

What to do if you need to store a float number?
For example −123.765 × 1012

First convert it to scientific notation
−1.23765 × 1014

truncate it to certain number of significant digits
let use 4 for example (actually 17 decimals for 64 bits float number)
−1.237 × 1014

resulting number should have a form (−1)s × c × bq

where s is a sign bit (1 in our case)
c is mantissa or coefficient (1.237)
b is the base (10)
q is the exponent (14)

Computers internally use binary base
b = 2
64 bits for full representation

52+1 bits for mantissa (about 17 decimal digits)
11 bits for exponent (±307)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 18 / 19

Limits of the float representation

maximum ±1.797693134862316 × 10308

(use realmax in Matlab)
(1.797693134862316 × 10308)× 10 = Inf
overflow error

minimum ±2.225073858507201 × 10−308

(use realmin in Matlab)
(2.225073858507201 × 10−308)/10 = 0
underflow problem

truncation error
1.797693134862316 + 20 = 21.797693134862318
1.797693134862316 + 100 = 101.7976931348623__

how to mitigate
try to use numbers of the similar magnitude
do not rely on the least significant digits

Eugeniy Mikhailov (W&M) Practical Computing Lecture 01 19 / 19

	Class goals and structure
	Computers introduction
	Programming languages overview
	Discretization - the main weakness of computers
	Binary representation

