Homework 05

General comments:

- Do not forget to run some test cases.
- Matlab has built-in numerical integration methods. For example quad is one of them. You might check validity of your implementations with answers produced by this Matlab built-in function. quad requires your function to be able to work with an array of \times points, otherwise it will fail.
- Of course, it is always better to compare to the exact analytically calculated value.

Problem 1 (2 points):
Implement the rectangle numerical integration method. Call you function rectInt (f, a, b, N), where a and b are left and right limits of integration, N the number of points, and f is handle to the function.

Problem 2 (3 points):

Implement the trapezoidal numerical integration method. Call you function trapezInt (f, a, b, N).
Problem 3 (5 points):
Implement the Simpson numerical integration method. Call you function simpsonInt (f, a, b, N). Remember about special form of $\mathrm{N}=2 \mathrm{k}+1$.

Problem 4 (5 points):
Implement the Monte-Carlo numerical integration method. Call you function montecarloInt (f, a, b, N).

Problem 5 (5 points):

For your tests calculate

$$
\int_{0}^{10}\left[\exp (-x)+(x / 1000)^{3}\right] d x
$$

Plot the integral absolute error (not the estimates provided in class) for the above 4 methods vs. different number of points N . Try to do it from small $\mathrm{N}=3$ to $\mathrm{N}=10^{6}$. Use loglog plotting function for better representation (make sure that you have enough points in all areas of the plot). Why the error start to grow with a larger N? Does it grow for all methods? Why is it so?

Problem 6 (5 points):

Calculate

$$
\int_{0}^{\pi / 2} \sin (401 x) d x
$$

Compare your result with the exact answer $1 / 401$. Provide a discussion about required number of points to calculate this integral.

