
Homework 04

Out of problem 1 and 2 choose only one to implement. Problems 3, 4, and 5 are
to be done unconditionally.

With your email submission attach listings of each function which you imple-
mented except maybe for problem 6.

General requirements:

1. All root finding functions must have optional outputs with the function value at so-
lution point, and number of iterations. So the general root finding function definition
should look like
function [x sol, f at x sol, N iterations] = find root method(f handle,...)

2. Name your function and use its parameters ordered exactly as prescribed
in the problem assignment. The TA will run tests assuming the prescribed naming
scheme. If your code is working but does not follow the specification points will be
reduced.

3. Check for the possible user misuse of the algorithms, think what could go wrong.
All relevant input parameters should be validated against possible user errors. If user
submits wrong input parameters, your function must exit with an error message im-
mediately without attempts to correct the wrong behavior. See e r r o r documentation
about how to do it.

4. Test your implementation with at least f(x) = exp(x)− 5 and the initial bracket [0,3],
but do not limit yourself to only this case.

5. If the initial bracket is not applicable (for example, in the Newton-Raphson algorithm)
use the right end of the test bracket as the starting point of the algorithm.

6. All methods should be tested for the following parameters e p s f=1e−8 and eps x
=1e−10.

Problem 1 optional (5 points):

Write proper implementation of the false position algorithm. Define your function as
func t i on [x so l , f a t x s o l , N i t e r a t i o n s] = r e g u l a f a l s i (f , xn , xp
, ep s f , eps x)

Problem 2 optional (5 points):

Write a proper implementation of the secant algorithm. Define your function as
func t i on [x so l , f a t x s o l , N i t e r a t i o n s] = secant (f , x1 , x2 , ep s f
, eps x)

1

Problem 3 (5 points):

Write a proper implementation of Newton-Raphson algorithm. Define your function as
func t i on [x so l , f a t x s o l , N i t e r a t i o n s] = NewtonRaphson (f , x s tar t
, ep s f , eps x , d f hand l e) . Note that d f hand l e is a handle to calculate deriva-
tive of the function f it could be either analytical representation of f ′(x) or its numerical
estimate via the central difference formula.

Problem 4 (5 points):

Write a proper implementation of Ridders’ algorithm. Define your function as
func t i on [x so l , f a t x s o l , N i t e r a t i o n s] = Ridders (f , x1 , x2 , ep s f
, eps x)

Problem 5 (5 points):

For each of the root finding implementation of your homework find roots of the following
two functions

(a) f1(x) = cos(x) − x with the ’x’ initial bracket [0,1]

(b) f2(x) = tanh(x− π) with the ’x’ initial bracket [-10,10]

Make a comparison table for the above algorithms with following rows

(a) Method name

(b) root of f1(x)

(c) initial bracket or starting value used for f1

(d) Number of iterations to solve f1

(e) root of f2(x)

(f) initial bracket or starting value used for f2

(g) Number of iterations to solve f2

make columns corresponding to 3 algorithms which you have chosen to implement.

If an algorithm diverges with the suggested initial bracket: indicate so, appropriately modify
the bracket, and show the modified bracket in the above table as well. Make your conclusions
about speed and robustness of the methods.

Problem 6 Bonus (2 points):

Plot the log10 of the absolute error of the sin(x) derivative at x = π/4 calculated with forward
and central difference methods vs. the log10 of the step size h value. See l o g l o g help for
plotting with the logarithmic axes. The values of h should cover the range 10−16 · · · 10−1

(read about Matlab’s l og space function designed for such cases).

Why the error decreases as h goes down and then starts to increase?

Note: the location of the minimum of the absolute error indicates the optimal value of h for
this particular case.

2

