Discrete Fourier Transform and filters

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 24
DFT vs. Matlab FFT

DFT

\[y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i \frac{2\pi (k-1)n}{N}) \] \hspace{.5cm} \text{inverse Fourier transform}

\[c_n = \sum_{k=1}^{N} y_k \exp(-i \frac{2\pi (k-1)n}{N}) \] \hspace{.5cm} \text{Fourier transform}

\(n = 0, 1, 2, \ldots, N - 1 \)

Matlab FFT

\[y_k = \frac{1}{N} \sum_{n=1}^{N} c_n \exp(i \frac{2\pi (k-1)(n-1)}{N}) \] \hspace{.5cm} \text{inverse Fourier transform}

\[c_n = \sum_{k=1}^{N} y_k \exp(-i \frac{2\pi (k-1)(n-1)}{N}) \] \hspace{.5cm} \text{Fourier transform}

\(n = 1, 2, \ldots, N \)

So do DFT \(\rightarrow \) Matlab FFT is equivalent of \(n \rightarrow n + 1 \) and vice versa.
Warning about notation

c₀ has a special meaning. It is the 0 frequency (i.e., DC) amplitude of the signal. Thus, I will always use the DFT notation unless mentioned otherwise.

People often denote the forward Fourier transform as \(\mathcal{F} \)

\[
Y = \mathcal{F} y
\]

So \(Y = (Y_0, Y_1, Y_2, \ldots, Y_{N-1}) = (c_0, c_1, c_2, \ldots, c_{N-1}) \) is the spectrum of the time domain signal \(y \)

Inverse Fourier transform is denoted as \(\mathcal{F}^{-1} \)

\[
y = \mathcal{F}^{-1} Y
\]

Instead of using \(c_n \) coefficients, we refer in this notation to \(Y_n \)
Sampling rate and important physics relationship

For DFT we need to have equidistant points and the signal repeating itself. We consider signals which start at time 0 and take N points over the period time T, thus, $y_k = y_{k+N}$. To deduce the time of a data point, we just multiply its index by the time spacing $\Delta t = T/N$. I.e., y_i is taken at time $t_i = i \Delta t = i/f_s$

The sampling rate f_s is defined as $f_s = 1/\Delta t = f_1 N$, and $f_1 = T/N$ is the frequency spacing in the spectrum, sometimes it is referred as the resolution bandwidth (RBW).

Time series

In Matlab `fft`, Y_n has the frequency $f_n = f_1 \times (n-1) = f_s \times (n-1)/N$.
Nyquist frequency

If we take N data points with the sampling rate f_s, what is the maximum frequency which we can expect to see in our spectrum?

Naively, we can say $(N - 1) \times f_1 \approx f_s$, since in the DFT spectrum all points are separated by the fundamental frequency $f_1 = 1/T = f_s/N$.

However, recall that

$$Y_n = c_n = \sum_{k=1}^{N} y_k \exp(-i \frac{2\pi(k - 1)n}{N})$$

Thus, $Y_{N-n} = Y_{-n}$, i.e., the higher half of the vector Y contains negative frequency. So at most, we can hope to obtain a spectrum with the highest frequency smaller than

$$F_{Nq} = f_1 \frac{N}{2} = \frac{f_s}{2}$$
You must sample your signal twice faster than the highest frequency component of it. I.e., the Nyquist frequency of your sample should be greater than the highest signal frequency.
Aliasing: wrong/slow sampling frequency

Sampling with

\[f_s = 2f_{signal} \]
i.e.

\[f_{Nq} = f_{signal} \]

Sampled signal appeared to be DC.
Under sampling
\(f_s = 1.1 f_{signal} \)

The sampled signal seems to have a lower frequency.

The sampled signal appears to have a slower frequency. This is case of the reflection/folding where the signal frequency is slightly higher than the sampling frequency.

\[f_{\text{apparent signal}} = (f_{signal} - 2f_{Nq}) \approx f_{signal} - f_s \]
Under sampling
\(f_s = 1.93 f_{signal} \)
The sampled signal looks very different.
DFT filters

Once you get a signal, you can filter the unwanted frequencies out of it. The recipe is the following:

- sample the signal
- calculate DFT (use Matlab `fft`)
- have a look at the spectrum and decide which frequencies are unwanted
- apply a filter which attenuate unwanted frequencies amplitudes
 - If you attenuate the component of the frequency f by g_f, you need to attenuate the component at $-f$ by g_f^*. Otherwise, the inverse Fourier transform will have non zero imaginary part.
- calculate inverse DFT (`ifft`) of the filtered spectrum
- repeat if needed

Applications

- Noise reduction
- Compression