Discrete Fourier Transform and filters

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 24

<u>←□→←□→←≥→←≥→−≥</u> ◆9<0

ugeniy Mikhailov (W&M)

Practical Computing

Lecture 2

DFT vs. Matlab FFT

DFT

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i\frac{2\pi(k-1)n}{N})$$
 inverse Fourier transform $c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N})$ Fourier transform $n = 0, 1, 2, \cdots, N-1$

Matlah FFT

$$y_k = \frac{1}{N} \sum_{n=1}^{N} c_n \exp(i\frac{2\pi(k-1)(n-1)}{N})$$
 inverse Fourier transform

$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)(n-1)}{N})$$
 Fourier transform

So do DFT \rightarrow Matlab FFT is equivalent of $n \rightarrow n + 1$ and vice versa \sim

Eugeniy Mikhailoy (W&M)

ture 24 2 /

2 / 10

Notes

Warning about notation

 c_0 has a special meaning. It is the 0 frequency (i.e., DC) amplitude of the signal. Thus, I will always use the DFT notation unless mentioned otherwise.

People often denote the forward Fourier transform as \mathcal{F}

$$Y = \mathcal{F}_{\mathbf{1}}$$

So $Y=(Y0,Y1,Y2,\ldots,Y_{N-1})=(c_0,c_1,c_2,\ldots,c_{N-1})$ is the spectrum of the time domain signal y

Inverse Fourier transform is denoted as \mathcal{F}^{-1}

$$y = \mathcal{F}^{-1} Y$$

Instead of using c_n coefficients, we refer in this notation to Y_n

(ロ) (個) (豆) (豆) 豆 り(0)

Eugeniy Mikhailov (W&M)

Practical Computin

Lecture 24

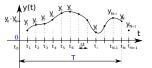
Sampling rate and important physics relationship

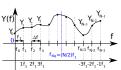
For DFT we need to have equidistant points and the signal repeating itself. We consider signals which start at time 0 and take N points over the period time T, thus, $y_k = y_{k+N}$. To deduce the time of a data point, we just multiply its index by the time spacing $\Delta t = T/N$. I.e., y_i is taken at time $t_i = i\Delta t = i/f_{\rm S}$

The sampling rate f_s is defined as $f_s = 1/\Delta t = f_1 N$, and $f_1 = T/N$ is the frequency spacing in the spectrum, sometimes it is referred as the resolution bandwidth (RBW).

Time series

Spectrum





In Matlab fft, Y_n has the frequency $f_n = f_1 \times (n-1) = f_s \times (n-1)/N$.

eniy Mikhailov (W&M) Practical Computing

.

4 / 10

Notes	
Notes	
Notes	

Nyquist frequency

If we take N data points with the sampling rate f_s , what is the maximum frequency which we can expect to see in our spectrum? Naively, we can say $(N-1)\times f_1\approx f_s$, since in the DFT spectrum all points are separated by the fundamental frequency $f_1=1/T=f_s/N$ However, recall that

$$Y_n = c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N})$$

Thus, $Y_{N-n}=Y_{-n}$, i.e., the higher half of the vector Y contains negative frequency. So at most, we can hope to obtain a spectrum with the highest frequency smaller than

Nyquist frequency

$$F_{Nq} = f_1 \frac{N}{2} = \frac{f_s}{2}$$

Eugeniy Mikhailov (W&M)

Practical Computing

ecture 24 5 / 10

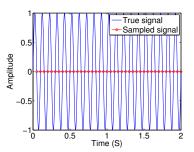
Nyquist criteria

$f_s > 2f_{signal}$

You must sample your signal twice faster than the highest frequency component of it. I.e., the Nyquist frequency of your sample should be > than the highest signal frequency.

Aliasing: wrong/slow sampling frequency

Sampling with $f_s = 2f_{signal}$ i.e. $f_{Nq} = f_{signal}$ Sampled signal appeared to be DC



Eugeniy Mikhailov (W&M)

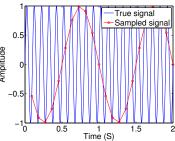
Practical Computing

1 ≥ ≥ √0 0

al Computing Lecture 24 7 / 10

Aliasing: too slow sampling frequency - reflection

Under sampling $f_s = 1.1 f_{signal}$ The sampled signal seems to have a lower frequency.



The sampled signal appears to have a slower frequency. This is case of the reflection/folding where the signal frequency is slightly higher than the sampling frequency.

 $f_{apparent \ signal} = (f_{signal} - 2f_{Nq}) \approx f_{signal} - f_{s}$

eniy Mikhailov (W&M) Practical Compu

D > 48 > 48 > 48 > 8 99

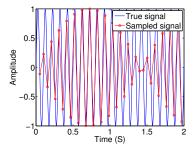
Notes Notes

Notes

Notes

Aliasing: too slow sampling frequency - ghosts

Under sampling $f_s = 1.93 f_{signal}$ The sampled signal looks very different.



Eugeniy Mikhallov (W&M) Practical Computing Lecture 24 9 / 10
DFT filters

Once you get a signal, you can filter the unwanted frequencies out of it. The recipe is the following $\,$

- sample the signal
- calculate DFT (use Matlab fft)
- have a look at the spectrum and decide which frequencies are unwanted
- apply a filter which attenuate unwanted frequencies amplitudes
 - If you attenuate the component of the frequency f by g_f , you need to attenuate the component at -f by g_f^* . Otherwise, the inverse Fourier transform will have non zero imaginary part.
- calculate inverse DFT (ifft) of the filtered spectrum
- repeat if needed

Applications

- Noise reduction
- Compression

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 24

10 / 10

Notes	
Notes	
Notes	
Notes	