### Fourier transform

Eugeniy E. Mikhailov

The College of William & Mary

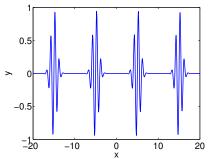


Lecture 23

1/9

### Fourier series

Any periodic single value function with a finite number of discontinuities, and for which  $\int_0^T |f(t)|dt$  is finite, can be presented as



$$y(t) = \frac{a_0}{2} + \sum_{1}^{\infty} (a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t))$$

T is the period, i.e., y(t) = y(t + T) $\omega_1 = 2\pi/T$  is the fundamental frequency

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{2}{T} \int_0^T dt \begin{pmatrix} \cos(n\omega_1 t) \\ \sin(n\omega_1 t) \end{pmatrix} y(t)$$

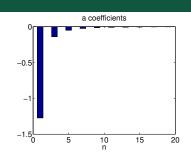
At a discontinuity, the series approaches the mid point

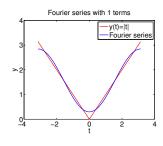
# Fourier series example: |t|

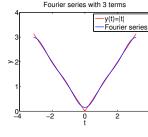
$$y(t) = |t|, -pi < t < pi$$

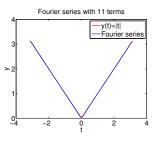
Since the function is even all  $b_n = 0$ 

$$\left\{ egin{aligned} a_0 &= \pi, \ a_n &= 0, & n ext{ is even} \ a_n &= -rac{4}{\pi n^2}, & n ext{ is odd} \end{aligned} 
ight.$$







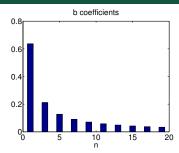


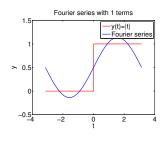
## Fourier series example: step function

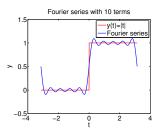
$$\begin{cases} 0, & -\pi < x < 0, \\ 1, & 0 < x < \pi \end{cases}$$

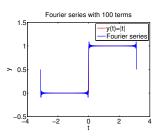
Since the function is odd all  $a_n = 0$  except  $a_0 = 1$ 

$$\begin{cases} b_n = 0, & n \text{ is even} \\ b_n = \frac{2}{\pi n}, & n \text{ is odd} \end{cases}$$









# Complex representation

#### Recall that

$$\exp(i\omega t) = \cos(\omega t) + i\sin(\omega t)$$

It can be shown that

$$y(t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_1 t)$$

$$c_n = \frac{1}{T} \int_0^T y(t) \exp(-i\omega_1 nt) dt$$

$$a_n = c_n + c_{-n}$$
  
$$b_n = i(c_n - c_{-n})$$

# What to do if function is not periodic?

- $T \to \infty$
- $\sum \rightarrow \int$
- ullet discrete spectrum o continuous spectrum
  - ullet  $oldsymbol{c}_n 
    ightarrow oldsymbol{c}_\omega$

$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c_{\omega} \exp(i\omega t) d\omega$$

$$c_{\omega} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t) \exp(-i\omega t) dt$$

Above requires that  $\int_{-\infty}^{\infty} dt \ y(t)$  exists and is finite.

Note that  $c_{\omega}$  has the extra  $\sqrt{2\pi}$  when compared to  $c_n$ , and T is gone.

# Discrete Fourier transform (DFT)

#### In reality, we cannot have

- infinitely large interval
- infinite amount of points to calculate true integral

Assuming that y(t) has a period T and we took N equidistant points

$$\Delta t = rac{T}{N}$$
 samples spacing,  $f_s = rac{1}{\Delta t}$  sampling rate  $f_1 = rac{1}{T} = rac{1}{N\Delta t}$  smallest observed frequency, also resolution bandwidth  $t_k = \Delta t imes (k-1)$   $y(t_{k+N}) = y(t_k)$  periodicity condition  $y_k = y(t_k)$  shortcut notation  $y_1, y_2, y_3, \cdots, y_N$  data set

We replace the integral in the Fourier series with the sum

## **DFT**

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i\frac{2\pi(k-1)n}{N})$$
 inverse Fourier transform
$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N})$$
 Fourier transform
$$n = 0, 1, 2, \dots, N-1$$

Confusion keeps increasing: where are the negative coefficients  $c_{-n}$ ? In DFT, they moved to the right end of the  $c_n$  vector:

$$c_{-n} = c_{N-n}$$



## Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just the smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points  $(y_k)$
- c=fft(y) Fourier transform
- y=ifft (c) inverse Fourier transform

Notice that fft does not normalize by N. So to get Fourier series  $c_n$ , you need to calculate fft (y) / N.

```
However y = ifft(fft(y))
```

Notice one more point of confusion: Matlab does not have index=0, so actual  $c_n = c_{matlab\ fft}(n-1)$ , so  $c_0 = c_{matlab\ fft}(1)$