Data interpolation

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 22

Data interpolation - filling the voids

There is rarely enough data. It often takes a lot of time to get a data point. It might be expensive. Nevertheless, we would like to have some representation of the system in the voids.

The nearest neighbor interpolation
The name says it all. For each interpolated point ($x_{\text {interpolated }}$), find the nearest neighbor along the x_{i} axis in the data set and use its y_{i} value.

We will split our data set with N points to $N-1$ intervals and interpolate the values in the given interval as a line passing through the border points $\left(x_{i}, y_{i}\right)$ and $\left(x_{i+1}, y_{i+1}\right)$

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polynomial fit
You can always find a polynomial of $N-1$ degree passing through N data points.

$$
P_{N}(x)=p_{1} x^{N}+p_{2} x^{N-1}+\cdots+p_{N} x+p_{N+1}
$$

Matlab has the 'polyfit' function which returns the polynomial coefficient.

```
% calculate coefficients
p=polyfit(xdata, ydata, (length(xdata)-1) );
% interpolate
yi=polyval(p,xi);
```


Interpolated values tend to oscillate for a polynomial of a high degree. Do not use it unless you know what you are doing!

Cubic spline interpolation
We will interpolate N data points by a polynomial of 3rd degree for each $i_{t h}$ interval between data point

$$
f_{i}(x)=p_{1_{i}} x^{3}+p_{2_{i}} x^{2}+p_{3_{i}} x+p_{4_{i}}, x \in\left[x_{i}, x_{i+1}\right]
$$

Cubic spline interpolation demystified
We will interpolate N data points by a polynomial of 3rd degree for each $i_{t h}$ interval between data point

$$
f_{i}(x)=p_{1_{i}} x^{3}+p_{2_{i}} x^{2}+p_{3_{i}} x+p_{4_{i}}, x \in\left[x_{i}, x_{i+1}\right]
$$

Interpolation must pass through data points

$$
\begin{aligned}
f_{i}\left(x_{i}\right) & =y_{i} \\
f_{i}\left(x_{i+1}\right) & =y_{i+1}
\end{aligned}
$$

The two above equations are not sufficient to constrain the four polynomial coefficients.

We request $f_{i}(x)$ to have continuous 1st and 2nd derivatives at the borders

$$
\begin{aligned}
f_{i}^{\prime}\left(x_{i+1}\right) & =f_{i+1}^{\prime}\left(x_{i+1}\right) \\
f_{i}^{\prime \prime}\left(x_{i+1}\right) & =f_{i+1}^{\prime \prime}\left(x_{i+1}\right)
\end{aligned}
$$

Additionally, we specify the 2nd derivatives at end points. Common choice is to set it to 0 . This is the so called natural cubic spline.

$$
f_{1}^{\prime \prime}\left(x_{1}\right)=0
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Eugeniy Mikhailov (W\&M) Pracical Computing ©" Lecture 22 Matlab built in interpolation

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Do not extrapolate unless you have a physical model of the process!

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

[^0]: Notes

