Ordinary Differential equations

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 19

ODE definitions

An ordinary equation of order n has the following form

$$
y^{(n)}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}\right)
$$

x independent variable
$y^{(i)}=\frac{\partial^{i} y}{\partial x^{i}}$, the $i_{t h}$ derivative of $y(x)$
f the force term

First order ODE example

Example

the acceleration of a body is the first derivative of velocity with respect to the time and equals to the force divided by mass

$$
a(t)=\frac{d v}{d t}=v^{\prime}(t)=\frac{F}{m}
$$

$$
\begin{aligned}
t & \rightarrow x \text { independent variable } \\
v & \rightarrow y \\
F / m & \rightarrow f
\end{aligned}
$$

And we obtain the canonical form

$$
y^{(1)}=f(x, y)
$$

for the first order ODE

$\mathrm{n}_{\text {th }}$ order ODE transformation to the system of first order ODEs

$$
y^{(n)}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}\right)
$$

We define the following variables

$$
y_{1}=y, y_{2}=y^{\prime}, y_{3}=y^{\prime \prime}, \cdots, y_{n}=y^{(n-1)}
$$

$$
\left(\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
y_{3}^{\prime} \\
\vdots \\
y_{n-1}^{\prime} \\
y_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n-1} \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{2} \\
y_{3} \\
y_{4} \\
\vdots \\
y_{n} \\
f\left(x, y_{1}, y_{2}, y_{3}, \cdots y_{n}\right)
\end{array}\right)
$$

We can rewrite $\mathrm{n}_{\text {th }}$ order ODE as a system of first order ODEs

$$
\vec{y}^{\prime}=\vec{f}(x, \vec{y})
$$

Cauchy boundary conditions

$$
\vec{y}^{\prime}=\vec{f}(x, \vec{y})
$$

This is the system of n equations and thus requires n constrains.
With Cauchy boundary conditions we specify $\vec{y}\left(x_{0}\right)=\vec{y}_{0}$ i.e. initial conditions

$$
\left(\begin{array}{c}
y_{1}\left(x_{0}\right) \\
y_{2}\left(x_{0}\right) \\
y_{3}\left(x_{0}\right) \\
\vdots \\
y_{n}\left(x_{0}\right)
\end{array}\right)=\left(\begin{array}{c}
y_{1_{0}} \\
y_{2_{0}} \\
y_{3_{0}} \\
\vdots \\
y_{n_{0}}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{0}^{\prime} \\
y_{0}^{\prime \prime} \\
\vdots \\
y_{0}^{(n-1)}
\end{array}\right)
$$

Problem example

If acceleration of the particle is given and constant, then find the position of the particle as a function of time.
We are solving

$$
x^{\prime \prime}(t)=a
$$

First, we need to convert it to the canonical form of a system of the first order ODEs.
$t \rightarrow x$ time as independent variable
$x \rightarrow y \rightarrow y_{1}$ particle position
$v \rightarrow y^{\prime} \rightarrow y_{2}$ velocity
$a \rightarrow f$ acceleration as a force term
SO

$$
x^{\prime \prime}=a \rightarrow y^{\prime \prime}=f \rightarrow \vec{y}^{\prime}=\vec{f}(x, \vec{y}) \rightarrow\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\binom{y_{2}}{f}
$$

We also need to provide the initial conditions: position $x_{0} \rightarrow y_{10}$ and velocity $v_{0} \rightarrow y_{2_{0}}$

Euler's method

Let's, for simplicity, consider a simple first order ODE (notice lack of the vector)

$$
y^{\prime}=f(x, y)
$$

There is an exact way to write the solution

$$
y\left(x_{f}\right)=y\left(x_{0}\right)+\int_{x_{0}}^{x_{f}} f(x, y) d x
$$

The problem is that $f(x, y)$ depends on y itself. However, on a small interval $[x, x+h]$, we can assume that $f(x, y)$ is constant Then, we can use the familiar box integration formula. In application to the ODE, this is called the Euler's method.

$$
y(x+h)=y(x)+\int_{x}^{x+h} f(x, y) d x \approx y(x)+f(x, h) h
$$

Euler's method continued

$$
y(x+h)=y(x)+f(x, y) h
$$

All we need is to split our interval into a bunch of steps of the size h, and leap frog from the first x_{0} to the next one $x_{0}+h$, then $x_{0}+2 h$ and so on.
Now, we can make an easy transformation to the vector case (i.e. $\mathrm{n}_{t h}$ order ODE)

$$
\vec{y}(x+h)=\vec{y}(x)+\vec{f}(x, y) h
$$

Similarly to the boxes integration method, which is inferior in comparison to more advance methods: trapezoidal and Simpson, the Euler's method is very imprecise for a given h and there are better ways.

Stability issue

Let's have a look at the first oder ODE

$$
y^{\prime}=3 y-4 e^{-x}
$$

It has the following analytical solution

$$
y=C e^{3 x}+e^{-x}
$$

If the initial condition $y(0)=1$, then the solution is

$$
y(x)=e^{-x}
$$

Clearly, it diverges from the analytical solution. The problem is in the round off errors. From a computer point of view, $y(0)=1+\delta$. Thus, $C \neq 0$ and the numerical solution diverges.
Do not trust the numerical solutions (regardless of a method) without proper consideration!

