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Combinatorial optimization problem statement

We still want to optimize (minimize) our multi dimensional merit
function E

Find ~x that minimizes E(~x) subject to g(~x) = 0,h(~x) ≤ 0

The only difference is that values of the ~x are discrete, i.e., any
component of the ~x can take a countable set of different values.

In this case, we cannot run our golden search algorithm or anything
else which assumes continuous space for the ~x .

Instead, we have to find a method to search through discrete sets of all
possible input values, i.e. go through all possible combinations of ~x
components.

Hence, the name combinatorial optimization.
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Example: Backpack problem

Suppose you have a backpack with a given size (volume). You have a
set of objects with given volumes and values (for example their cost).

Our job is to find a such subset of items that still fits in the backpack
and has the maximum combined value.

For simplicity, we will assume that every item occurs only once.
Then our job is to maximize

E(~x) =
∑

valueixi =
−−−−→
values · ~x

Subject to the following constrains∑
volumeixi =

−−−−−→
volumes · ~x ≤ BackpackSize

Where xi = (0 or 1), i.e., it reflects whether we take this object or not

Eugeniy Mikhailov (W&M) Practical Computing Lecture 17 3 / 9

Brute force optimization

With this approach, we will just try all possible combinations of items
and find the best of them.

Notice that if there are N objects, we have 2N of all possible
combinations to choose from.

So the size of the problem space and, thus, the solving time grows
exponentially.
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Backpack optimization: new test set generation

Recall that we are looking for an optimal direction among all possible ~x
Generally ~x is a combination of zeros and ones
~x = [0,1,0,1, · · · ,1,1,0,1,1]
How would we generate all possible combinations of ~x components?

~x looks like a binary number.
let’s start with ~x = [0,0,0,0, · · · ,0,0]
every new component will be generated by adding 1 to the
previous x according to binary addition rules

for example
xnext = [1,0,1, · · · ,1,1,0,1,1] + 1 = [1,0,1, · · · ,1,1,1,0,0]

for every new ~x , we check to see if the items fit into the backpack
and if new fitted value is larger then the previous
once we have tried all 2N combinations of ~x , we are done

The time of the optimization grows exponentially with the number N of
items to chose, but we will find the global optimum.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 17 5 / 9

Backpack optimization: new test set generation

Recall that we are looking for an optimal direction among all possible ~x
Generally ~x is a combination of zeros and ones
~x = [0,1,0,1, · · · ,1,1,0,1,1]
How would we generate all possible combinations of ~x components?

~x looks like a binary number.
let’s start with ~x = [0,0,0,0, · · · ,0,0]
every new component will be generated by adding 1 to the
previous x according to binary addition rules

for example
xnext = [1,0,1, · · · ,1,1,0,1,1] + 1 = [1,0,1, · · · ,1,1,1,0,0]

for every new ~x , we check to see if the items fit into the backpack
and if new fitted value is larger then the previous
once we have tried all 2N combinations of ~x , we are done

The time of the optimization grows exponentially with the number N of
items to chose, but we will find the global optimum.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 17 5 / 9

Backpack optimization: test run

For realization of this algorithm, have a look at the
backpack_binary.m
Sample run

backpack_size=7;
volumes=[ 2, 5, 1, 3, 3];
values =[ 10, 12, 23, 45, 4];
[pbest, max_fitted_value] = ...

backpack_binary( backpack_size, volumes, values)

pbest = [1 3 4]
max_fitted_value = 78

My computer sorts 20 items in 47 seconds, but 30 items would
take 1000 times longer something like 13 hours to solve.
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Example: Traveling salesman problem

Suppose that you have N cities (with given coordinates) to visit
A salesman starts in the city 1 and need to be in the city N at the
end of a route
Find the shortest route, so the salesman visits every city only once

This problem has a lot of connections to the real world. Every time you
ask your GPS to find a route, the GPS unit has to solve this problem.
Layout of traces on a printed circuit board is essentially the same
problem, as well.
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Note that combinatorial
complexity of this problem

(N − 2)!

since ends points are fixed.
This grows very fast with N.
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Possible solutions

Brute force - combinatorial
Try every possible combination of cities and choose the best one
Will work for the modest route with N ≤ 10 or may be slightly more
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Permutation generating algorithm

The below method goes back to 14th century India. It generates
permutations in the lexicographical order 1.

1 find the largest index k such that p(k) < p(k + 1).
if no such index exists, the permutation is the last permutation.

2 find the largest index l such that p(k) < p(l).
There is at least one l = k + 1

3 swap a(k) with a(l).
4 reverse the sequence from a(k + 1) up to and including the final

element a(end).
See the complimentary code permutation.m

1See “The Art of Computer Programming, Volume 4 : Generating All Tuples and
Permutations” by Donald Knuth for the discussion of the algorithm
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