Multi-D optimization problem Notes Eugeniy E. Mikhailov The College of William & Mary Lecture 16 ## Multi-D optimization Find \vec{x} that minimizes $E(\vec{x})$ subject to $g(\vec{x}) = 0, h(\vec{x}) \le 0$ \vec{x} design variables $E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains It is easy to see that the maximization problem is the same as minimization once $E(\vec{x}) \rightarrow -E(\vec{x})$. # Solution with Matlab built in Multi-D minimization fminsearch [x, fval] = fminsearch(fun, x0) fun hanldle to the multi-variable function x0 initial 'guess' (vector) x optimum position vector fval value of the function at the optimum # fminsearch - usage example x0vec=[0.5, 0.5]; [xResVec, zopt]=fminsearch(@fsample_sinc, x0vec) xResVec = [0.2852e-4,0.1043e-4] zopt = -1.0000 | Notes | | | | |-------|--|--|-------------| | | | | | | | | | | Notes | - | Notes | _ | # It is easy to miss global minimum ## Example ``` function ret=fsample_sinc(v) x=v(1); y=v(2); r=sqrt(x^2+y^2); ret = -sin(r)/r; end ``` ## Example ``` x0vec=[5, 5]; [xResVec,zopt]=fminsearch(@fsample_sinc, x0vec) xResVec = [5.6560] 5.2621] zopt = -0.1284 ``` Eugeniy Mikhailov (W&M) Practical Computing ### Sample problem 1 Find the minimum of the function $$F(x, y, z) = 2x^2 + y^2 + 2z^2 + 2xy + 1 - 2z + 2xz$$ ### Sample problem 1 Find the minimum of the function $$F(x, y, z) = 2x^2 + y^2 + 2z^2 + 2xy + 1 - 2z + 2xz$$ $$F(x, y, z) = (x + y)^2 + (x + z)^2 + (z - 1)^2$$ Minimum is [x, y, z] = [-1, 1, 1] ## Sample problem 2: Potential well Consider a 1D potential well with the following potential $$U(x) = \begin{cases} \infty : x < 0 \\ 0 : x \le L \\ U_0 : x > L \end{cases}$$ The wave function for this problem $$\Psi(x) = \begin{cases} 0 & : & x < 0 \\ \sin(kx) & : & x \le L \\ Be^{-\alpha x} & : & x > L \end{cases}$$ Quantum Mechanics requires that $k=\frac{\sqrt{2m(E-U_o)}}{\hbar}$ and $\alpha=\frac{\sqrt{2m(U_o-E)}}{\hbar}$ We know that Ψ function must be continuous and differentiable $$\Psi_{in}(L) = \Psi_{out}(L)$$ $$\Psi'_{i}(L) = \Psi'_{i}(L)$$ $$\Psi_{\textit{in}}'(L) \ = \ \Psi_{\textit{out}}'(L)$$ Suppose that we somehow know k. What are the values for α and B? Notes Notes Notes Notes # Sample problem 2: Potential well (cont) Instead of solving the system of linear equations $$\Psi_{in}(L) = \Psi_{out}(L)$$ $\Psi'_{in}(L) = \Psi'_{out}(L)$ Let's construct merit function $$\textit{M}(\alpha,\textit{B}) = (\Psi_{\textit{in}}(\textit{L}) - \Psi_{\textit{out}}(\textit{L}))^2 + (\Psi_{\textit{in}}'(\textit{L}) - \Psi_{\textit{out}}'(\textit{L}))^2$$ # Sample problem 2: Potential well (cont) Instead of solving the system of linear equations $$\Psi_{in}(L) = \Psi_{out}(L)$$ $\Psi'_{in}(L) = \Psi'_{out}(L)$ Let's construct merit function $$M(\alpha, B) = (\Psi_{in}(L) - \Psi_{out}(L))^2 + (\Psi'_{in}(L) - \Psi'_{out}(L))^2$$ k=5.1416; L=1; v0=fminsearch(... @merit_psi, [.11,1]) v0 = 2.3531 - 9.5640alpha ### Sample problem 3: hanging weights Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 . We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m' For the following initial conditions m1=2; m2=2; L1=3; L2=2; L3=3; Ltot=4; Htot=0; $\mathsf{L}_{\underline{\mathsf{tot}}}$ ## Sample problem 3: hanging weights Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 . We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m' For the following initial conditions The answer should be close to $\theta_1 = -1.231$; $\theta_2 = 0$; $\theta_3 = 1.231$; theta = fminsearch(@EconstrainedSuspendedWeights, [-1,0,-1], optimset('TolX',1e-6)) -0.0044 theta = -1.23211.2311 Notes | • | | | |-------|--|--| | | | | | | | | | | | | | - | Makaa | | | | Notes | | | | | | | | | | | Notes Notes