Multi-D optimization problem

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 16

\qquad

It is easy to miss global minimum

Example

Example

```
x0vec=[5, 5];
[xResVec,zopt]=fminsearch(@fsample_sinc, x0vec)
    xResVec = [ 5.6560 5.2621 ]
    zopt = -0.1284
```


Sample problem 1

Find the minimum of the function
$F(x, y, z)=2 x^{2}+y^{2}+2 z^{2}+2 x y+1-2 z+2 x z$

Sample problem 1

Find the minimum of the function
$F(x, y, z)=2 x^{2}+y^{2}+2 z^{2}+2 x y+1-2 z+2 x z$
$F(x, y, z)=(x+y)^{2}+(x+z)^{2}+(z-1)^{2}$

Minimum is $[x, y, z]=[-1,1,1]$

Sample problem 2: Potential well

Consider a 1D potential well with the following potential

$$
U(x)=\left\{\begin{array}{lll}
\infty & : & x<0 \\
0 & : & x \leq L \\
U_{0} & : & x>L
\end{array}\right.
$$

The wave function for this problem

$$
\Psi(x)= \begin{cases}0 & : \quad x<0 \\ \sin (k x) & : \quad x \leq L \\ B e^{-\alpha x} & : \quad x>L\end{cases}
$$

Quantum Mechanics requires that $k=\frac{\sqrt{2 m\left(E-U_{0}\right)}}{\hbar}$ and $\alpha=\frac{\sqrt{2 m\left(U_{0}-E\right)}}{\hbar}$
We know that Ψ function must be continuous and differentiable

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\Psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\Psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Sample problem 2: Potential well (cont)
Instead of solving the system of linear equations

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\Psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\Psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Let's construct merit function

$$
M(\alpha, B)=\left(\Psi_{\text {in }}(L)-\Psi_{\text {out }}(L)\right)^{2}+\left(\Psi_{\text {in }}^{\prime}(L)-\Psi_{\text {out }}^{\prime}(L)\right)^{2}
$$

Sample problem 2: Potential well (cont)

Instead of solving the system of linear equations

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Let's construct merit function

$$
M(\alpha, B)=\left(\Psi_{\text {in }}(L)-\Psi_{\text {out }}(L)\right)^{2}+\left(\Psi_{\text {in }}^{\prime}(L)-\Psi_{\text {out }}^{\prime}(L)\right)^{2}
$$

```
k=5.1416; L=1;
v0=fminsearch(...
    @merit_psi, [.11,1])
v0 = 2.3531 -9.5640
% alpha B
```


Sample problem 3: hanging weights

Consider masses m_{1} and m_{2} suspended by
strings with length L_{1}, L_{2}, and L_{3}.
Find the angles θ_{1}, θ_{2}, and θ_{3}.
We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions
m1=2; m2=2;

$\mathrm{L} 1=3 ; \mathrm{L} 2=2 ; \quad \mathrm{L} 3=3$;
Ltot=4; Htot=0;

Sample problem 3: hanging weights

Consider masses m_{1} and m_{2} suspended by strings with length L_{1}, L_{2}, and L_{3}. Find the angles θ_{1}, θ_{2}, and θ_{3}.

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions
$\mathrm{m} 1=2 ; \mathrm{m} 2=2 ;$
$\mathrm{L} 1=3 ; \quad \mathrm{L} 2=2 ; \quad \mathrm{L} 3=3 ;$ Ltot $=4$; Htot=0;
The answer should be close to $\theta_{1}=-1.231 ; \theta_{2}=0 ; \theta_{3}=1.231$;

Notes

\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
theta $=$ fminsearch (@EconstrainedSuspendedWeights, [-1,0,-1], optimset('TolX',1e-6)) theta $=-1.2321 \quad-0.0044 \quad 1.2311$

