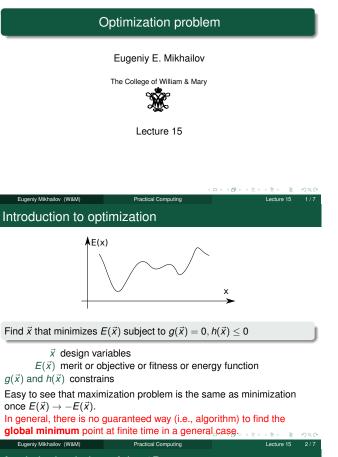
Notes

Notes



Analytical solution of the 1D case

Notes

If we have the 1D case and E(x) has the analytical derivative, the optimization problem can be restated as

Find x such that f(x) = 0where f(x) = dE/dx

Eugeniy Mikhailov (W&M)

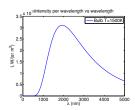
We already know how to find the solution of f(x) = 0, so the rest is easy. Note that we will find a **local** minimum or maximum.

Example: the maximum of a black body radiation spectrum

Practical Computing

According to Plank's law energy density per of black body radiation

 $I(\lambda, T) = rac{2hc^2}{\lambda^5} rac{1}{e^{rac{hc}{\lambda kT}} - 1}$



Lecture 15

where

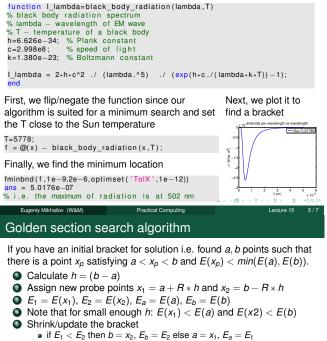
- *h* is Planck constant 6.626 \times 10⁻³⁴ J \times s,
- c is speed of light 2.998 \times 10⁸ m/s,
- k~ is Boltzmann constant 1.380 \times 10⁻²³ J/K,
- T is body temperature in K,
- λ is wavelength in m

Notes

Solution with Matlab built in 1D minimization - fminbnd

Notes

Notes



- if $h < \varepsilon_x$ then stop otherwise do steps below • With the proper *R*, we can reuse one of the old points:
- With the proper R, we can reuse one of the old points; either x₁, E₁ or x₂, E₂ Thus, we reduce the calculation time
 if E₁ < E₂ then x₂ = x₁, E₂ = E₁, x₁ = a + R * h, E₁ = E(x₁)

Practical Computing

Lecture 15

else
$$x_1 = x_2$$
, $E_1 = E_2$, $x_2 = b - R * h$, $E_2 = E(x_2)$
Go to step 5

The *R* is given by the golden section $R = \frac{3-\sqrt{5}}{2} \approx 0.38197$

Derivation of the R value

at the first step we have

Eugeniy Mikhailov (W&M)

8

$$\begin{array}{rcl} x_1 &=& a+R*h\\ x_2 &=& b-R*h \end{array}$$

If $E(x_1) < E(x_2)$, then a' = a and $b' = x_2$ then, to find the next bracket, we evaluate x'_1 and x'_2

$$\begin{aligned} x'_1 &= a' + R * h' = a' + R * (b' - a') \\ x'_2 &= b' - R * h' = b' - R * (b' - a') \\ &= x_2 - R * (x_2 - a) = b - R * h - R * (b - R * h - a) \end{aligned}$$

we would like to reuse one of the previous evaluations of *E*, so we require that $x_1 = x'_2$. This leads to the equation

$$R^2 - 3R + 1 = 0$$
 with $R = \frac{3 \pm \sqrt{5}}{2}$

We need to choose minus sign since fraction $R \le 1$ and $R \ge 1$

Notes

Notes