Random number generators and random processes

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 13

Statistics and probability intro

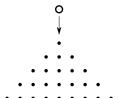
Mathematical and physical definition of probability (p) of event 'x'

$$\rho_{\scriptscriptstyle X} = \lim_{N_{total} \to \infty} \frac{N_{\scriptscriptstyle X}}{N_{total}}$$

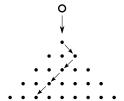
where

 N_x the number of registered event 'x' N_{total} the total number of all events

Peg board example



Peg board example



Ν	ote	9

_				

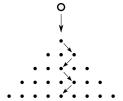
Notes

Notes

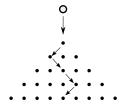
-			

Notes

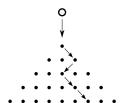
Peg board example



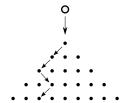
Peg board example



Peg board example

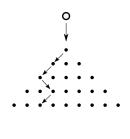


Peg board example

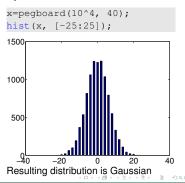


Notes	
Notes	
Notes	
Notes	
110100	

Peg board example



Example of 10⁴ balls runs over 40 layers of nails



Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 13 3 / 11

Notes

Probability for occurrence of the real number

The interval [0..1] has infinite amount of real numbers. This is true for any other non zero interval.

Since we cannot run ∞ number of tests, there is very little or maybe zero chance that an event will repeat or even happen.

In this case, we should speak about probability density p(x).

The best way to estimate it is to make a histogram.

Run N tests with numbers distributed between 0 and 1, split the interval of interest into m bins and calculate the number of events which occur in a given bin $h(x_b)$. Plot this vs bin positions.

The probability density estimate

$$p(x) = \lim_{N,m \to \infty} \frac{h(x_b \text{ nearest to } x)}{N}$$

Easy to do with Matlab

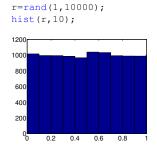
Eugeniy Mikhailov (W&M)

r=rand(1,N); hist(r,m);

Practical Cor

Lecture 13 4 /

Uniform random distribution





Eugeniy Mikhailov (W&M)

Practical Computing

2 > 4 2 > 2 - 4

Random number generators

How can a computer, which is very accurate, precise, and deterministic, generate random numbers?

It cannot!

Instead we can generate a sequence of pseudo random numbers. By pseudo we mean that starting from the same initial conditions the computer will generate the same sequence of numbers (*very handy for debugging*). But otherwise it will look like random numbers and will have statistical properties of random numbers.

Notes			
Notes			
Notes			
Notes			

Linear Congruential Generator (LCG)

Recursive formula

 $r_{i+1} = (ar_i + c) \mod m$

here

m the modulus

a multiplier, 0 < a < m

c increment, $c \le c < m$

 r_1 seed value, $0 \le r_1 < m$

All pseudo random generators have a period and this one is no exception. Note that once r_i repeats one of the previous values the sequence will restart.

This one can have at most a period of m distinct numbers (0..m).

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 13 7 / 11

Notes

Notes

Linear Congruential Generator (LCG) continued

A bad choice of a, c, m will lead to an even a shorter period.

Example

$$m = 10, a = 2, c = 1, r_1 = 1$$

 $r = [1, 3, 7, 5, 1]$

While the LCG has advantage of speed and simplicity.

Do not use the LCG whenever your money or reputation are at stake!

While Matlab does not use LCG, many other programming languages use it as default in their libraries so be aware of it.

←ロト←団ト←玉ト←玉ト 玉 夕久で Lecture 12 - 9/11

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 13 8 / 1

Random number generators period

Even the best pseudo random generators cannot have a period larger than 2^B , where B is number of memory bits. Can you prove it?

While the period can be huge its not infinite. For example for Matlab R2007a the period is $2^{19937}-1$.

Why bother?

Recall that the Monte Carlo integration method is $\sim 1/\sqrt{N}$.

This holds true only when N < than the period of random number generator (T).

Otherwise the MC method cannot give uncertainty better than $\sim 1/\sqrt{T}.$ Further increase of the number of random points will not bring any extra improvement.

 4 □ > 4 ∰ > 4 ≥ > 4 ≥ >
 ≥ 9 0 €

 Lecture 13
 9/11

Eugeniy Mikhailov (W&M)

Practical Computing

How to check the random generator

Generally it is uneasy and probably impossible.

However for us only statistical properties are of importance.

So the easiest is to check that integral deviation calculated with Monte Carlo algorithm drops as $1/\sqrt{N}.$

0 > 4 @ > 4 E > 4 E > E 990

geniy Mikhailov (W&M)

Practical Computing

Lecture 13

Notes

Notes

Simple random generator check

```
Let's compare the Matlab rand and the LCG seeded with a bad coefficients set m=10, a=2, c-1, r_0=1 function r=\ldots lcgrand (Nrows, Ncols, ...
```

a,c,m, seed)

r=zeros(Nrows, Ncols);
r(1)=seed;
cntr=1;
for i=2:Nrows*Ncols;
r(i)= mod((a*r(i-1)+c), m);
end
r=r/(m-1); %normalization
end

Circles correspond to the MC with rand and crosses to lcgrand seeded with the Eugenly Mikhailov (W&M)

40 40 40 45 45

check_lcgrand

Practical Computing								L	.ec	tur	e 13		11/1
	4	Þ	4	đ	Þ	4	3	Þ	4	3	•	3	20

Notes
Notes
Notes
Notes