Practical example: diffraction

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 11

Diffraction

According to Huygens' principle, every point on the mask is a secondary source. Thus, the electric field magnitude at a target is expressed through a known electric field at a mask.

$$E_{target}(\vec{r}) \sim \int \int_{mask} dx' dy' rac{E_{mask}(x',y')}{|\vec{r}-\vec{r}'|} e^{ik|\vec{r}-\vec{r}'|}$$

We assumed that both the mask and the target are parallel to the x-y plane and that $\vec{r}-\vec{r}'$ is mostly parallel to z axis. Here

- $\vec{r} = (x, y, z)$ is the radius vector pointing to the target point,
- $\vec{r}' = (x', y', z')$ is is the radius vector pointing to the mask/source,
- $k = \frac{2\pi}{\lambda}$ is the magnitude of k-vector.

Diffraction approximation via sum

$$E_{target}(\vec{r}) \sim \sum_{i} \sum_{k} \Delta x' \Delta y' rac{E_{mask}(x_i', y_k')}{|\vec{r} - \vec{r}'|} e^{ik|\vec{r} - \vec{r}'|}$$

Here

$$\vec{r} = x, y, z$$
 $\vec{r}' = x'_i, y'_k, z'$
 $\vec{k} = \frac{2\pi}{\lambda}$

It is important that the integrated function does not oscillate wildly from one sample point to another sample point. So, we need $\Delta x'$ and $\Delta y' \ll \sqrt{L\lambda}$, where L is distance between the mask and the target.

Sample of diffraction

Let's consider a diffraction of light on a mask shown below.

- resolution1386 × 600 pixels
- physical size2.8 × 1.2 cm
- distance to the target 1.1 m
- resolution 693 × 200 pixels,
- physical size 3.0×1.4 cm
- wavelength $\lambda = 670 \text{ nm}$

Calculation time 6 and half hours at the 6 core AMD computer