Notes

Notes

Data reduction and fitting

Eugeniy E. Mikhailov

Lecture 07

Eugeniy Mikhailov (W&M) Data reduction

- Typical modern experiment generates huge amount of data.
- there is no way for a human to comprehend such enormous amount of data

Data reduction

- Typical modern experiment generates huge amount of data.
- there is no way for a human to comprehend such enormous amount of data

• to extract important parameters we need to post-process the data • alternatively we want to check how our models reflect reality Practical Computing

Eugeniy Mikhailov (W&M) Fitting

Someone measured the dependence of an experimental parameter y on another parameter x. We want to extract the unknown model parameters $p_1, p_2, p_3, \ldots = \vec{p}$ via fitting (i.e. finding the best \vec{p}) of the model function which depends on x and \vec{p} : $f(x, \vec{p})$.

In general x and y could be vectors i.e. multi-dimensional.

Example

- \vec{x} has 2 coordinates: speed of a car and the weight of its load;
- y has the car fuel consumption and temperature.

For simplicity, we will focus on the one dimensional case for x and y

Practical Computing

- we are given experimental points $x_i \rightarrow y_i$
- our model $x_i \rightarrow y_{f_i} = f(x_i, \vec{p})$

Notes

Lecture 07

ecture 0

Notes

Goodness of the fit

We need to define some way to estimate the goodness of the fit.

Chi-squared test

Eugeniy Mikhailov (W&M)

$$\chi^2 = \sum_i (y_i - y_{f_i})^2$$

Lecture 07

Lecture 07

Lecture 0

Differences of $(y_i - y_{f_i})$ are called residuals.

For a given set of $\{(x_i y_i)\}$ and *f* the goodness of the fit χ^2 depends only on parameters vector \vec{p} of the model/fit function.

Our job is simple: find optimal \vec{p} which minimizes χ^2 using any suitable algorithm. I.e., perform so called **the least square fit**.

Practical Computing

Good fit should have the following properties

- the fit should use the smallest possible fitting parameters set
 - with enough fitting parameters you can make zero residuals fit but this is unphysical since all your data has uncertainties in the measurements
- residuals should be randomly scattered around 0
 i.e. no visible trends of residuals vs x
- standard deviation or RMS residual = √¹/_N Σ^N_i (y_i − y_{ti})² should be in order of the Δy (experimental uncertainty for y)
 - the above condition is often overlooked but you should keep your eyes on it. It also can give you actual estimate of the experimental error bars
- fit should be robust: new points must not change parameters much
- Eugeniy's extra: stay away from the high order polynomial fits.
 line is good, parabola maybe

Practical Computin

- anything else only if there is a deep physical reason for it
- besides, such fits are usually useless since every new data point usually drastically modifies the fit parameters.

Estimation of uncertainty for parameters

Notes

- Δp_i could be estimated by change of the χ^2 ,
- $\Delta p_i: \chi^2(p_1, p_2, p_3, \dots, p_i + \Delta p_i, \dots) = 2\chi^2(p_1, p_2, p_3, \dots, p_i, \dots)$

Practical Computing

Practical realization

ugeniv Mikhailov (W&M)

likhailov (W&M

Have a look at 'fitter.m' where optimization of χ^2 is done with fminsearch matlab function.

See 'fitter_usage_example.m' for a particular usage example.

Notes

Notes

Notes

Notes

Notes

- \bullet see fit from the Matlab curve fitting toolbox
 - more cumbersome to start using
 provides parameters uncertainties

Eugeniy Mikhailov (W&M) Practical Computing

 \bullet see <code>lsqcurvefit</code> from the Matlab optimization toolbox

They are faster since they take an assumption that merit function is quadratic.

		$+ \Box \mapsto + \Box \mapsto + \Xi \mapsto + \Xi \Rightarrow$	₹ •9.Q.@
Eugeniy Mikhailov (W&M)	Practical Computing	Lectur	e07 8/9
Matlab built-in fit	usage example		
%% built in fit function usa	ge example		
<pre>% load initial data file data=load('data_to_fit.dat') x=data(:,1); % lst column is y=data(:,2); % 2nd column is</pre>	x		
<pre>% define the fitting functio % notice that it is quite hu % Matlab automatically treat f=fittype(@(A,x0,gamma, x) A</pre>	man readable s x as independent variable		
% let's see did Matlab guess coeffs = coeffnames(f)	fit parameters right		
<pre>% assign initial guessed par % [A, x0, gamma] they are in % in the above fit function pin=[3,3,1];</pre>	the order of the appearance		
% We fit our data here [fitobject,gof] = fit (x,y,	f, 'StartPoint', pin)		
<pre>disp('confidence interval/er ci = confint(fitobject)</pre>	rorbars for A, $x0$, and gamma');	
<pre>% it is good idea to compare builtin_fit_check(x,y, fitob</pre>		1011001001000	5 900

Notes

Lecture 07 9 / 9

Notes