Data reduction and fitting

Eugeniy E. Mikhailov
The College of William & Mary
Lecture 07

Data reduction

- Typical modern experiment generates huge amount of data.
- There is no way for a human to comprehend such enormous amount of data.

\[y \]
\[x \]

- To extract important parameters, we need to post-process the data.
- Alternatively, we want to check how our models reflect reality.

Fitting

Someone measured the dependence of an experimental parameter \(y \) on another parameter \(x \). We want to extract the unknown model parameters \(p_1, p_2, p_3, \ldots = \beta \) via fitting (i.e., finding the best \(\hat{\beta} \)) of the model function which depends on \(x \) and \(\beta \): \(f(x, \beta) \).

In general, \(x \) and \(y \) could be vectors i.e., multi-dimensional.

Example

- \(x \) has 2 coordinates: speed of a car and the weight of its load;
- \(y \) has the car fuel consumption and temperature.

For simplicity, we will focus on the one dimensional case for \(x \) and \(y \):
- We are given experimental points \(x_i \rightarrow y_i \);
- Our model \(x_i \rightarrow y_i = f(x_i, \beta) \).
Goodness of the fit

We need to define some way to estimate the goodness of the fit.

Chi-squared test

\[\chi^2 = \sum_i (y_i - y_{fi})^2 \]

Differences of \((y_i - y_{fi})\) are called residuals.

For a given set of \(\{(x_i, y_i)\}\) and \(f\) the goodness of the fit \(\chi^2\) depends only on parameters vector \(\vec{\beta}\) of the model/fit function.

Our job is simple: find optimal \(\vec{\beta}\) which minimizes \(\chi^2\) using any suitable algorithm. I.e., perform so called the least square fit.

Good fit should have the following properties

- the fit should use the smallest possible fitting parameters set
 - with enough fitting parameters you can make zero residuals fit but this is unphysical since all your data has uncertainties in the measurements
- residuals should be randomly scattered around 0
 - i.e. no visible trends of residuals vs \(x\)
- standard deviation or RMS residual \(= \sqrt{\frac{\sum_i (y_i - y_{fi})^2}{N}}\) should be in order of the \(\Delta y\) (experimental uncertainty for \(y\))
 - the above condition is often overlooked but you should keep your eyes on it. It also can give you actual estimate of the experimental error bars
- fit should be robust: new points must not change parameters much
- Eugeniy's extra: stay away from the high order polynomial fits.
 - line is good, parabola maybe
 - anything else only if there is a deep physical reason for it
 - besides, such fits are usually useless since every new data point usually drastically modifies the fit parameters

Estimation of uncertainty for parameters

- \(\Delta \vec{\beta}\) could be estimated by change of the \(\chi^2\),
- \(\Delta \vec{\beta}: \chi^2(p_1, p_2, p_3, \ldots + \Delta p_i, \ldots) = 2\chi^2(p_1, p_2, p_3, \ldots, \ldots)\)

Practical realization

Have a look at 'fitter.m' where optimization of \(\chi^2\) is done with fminsearch matlab function.
See 'fitter_usage_example.m' for a particular usage example.
Matlab built-ins

- see `fit` from the Matlab curve fitting toolbox
- more cumbersome to start using
- provides parameters uncertainties
- see `lsqcurvefit` from the Matlab optimization toolbox

They are faster since they take an assumption that merit function is quadratic.

Matlab built-in fit usage example

```
%% built in fit function usage example
load initial data file
data=load('data_to_fit.dat');
x=data(:,1); % 1st column is x
y=data(:,2); % 2nd column is y

% define the fitting function with fittype
% notice that it is quite human readable
% Matlab automatically treats x as independent variable
f=fittype(@(A,x0,gamma, x) A ./ (1 +((x-x0)/gamma).^2) )

% let's see did Matlab guess fit parameters right
coeffs = coeffnames(f)

% assign initial guessed parameters
p0=[3,3,1]; % they are in the order of the appearance

% We fit our data here
[fitobject,gof] = fit(x,y, f, 'StartPoint', p0)

% it is good idea to compare fit and data visually
builtin_fit_check(x,y, fitobject)
```

Notes