Root finding continued

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06

Secant method

$$x_{i+2} = x_{i+1} - f(x_{i+1}) \frac{x_{i+1} - x_i}{f(x_{i+1}) - f(x_i)}$$

Need to provide two starting points x_1 and x_2 . Secant method converges with $m = (1 + \sqrt{5})/2 \approx 1.618$

Newton-Raphson method

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Need to provide a starting points x_1 and the derivative of the function. Newton-Raphson method converges quadratically (m = 2).

3/10

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*.

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01).

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h.

Remember about roundoff errors (HW01).

For computers with h small enough f(x + h) - f(x) = 0.

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error.

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01).

For computers with h small enough f(x+h) - f(x) = 0.

Let's be smarter. Recall Taylor series expansion

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error. There is a range of optimal h when both the round off and the algorithm errors are small.

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small h

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small h

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small h

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^2$$

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small h

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^2$$

 $f(x + h) = a + b(x + h)^2 = a + bx^2 + 2bxh + bh^2$

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small h

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to *h*.

Example

$$f(x) = a + bx^{2}$$

 $f(x+h) = a + b(x+h)^{2} = a + bx^{2} + 2bxh + bh^{2}$
 $f'_{c}(x) = \frac{f(x+h) - f(x)}{h} = 2bx + bh$

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error for small *h*

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^{2}$$

 $f(x+h) = a + b(x+h)^{2} = a + bx^{2} + 2bxh + bh^{2}$
 $f'_{c}(x) = \frac{f(x+h) - f(x)}{h} = 2bx + bh$

So for small x, the algorithm error dominate our approximation!

Derivative via Central difference

$$f_c'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Derivative via Central difference

$$f'_c(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Algorithm error

$$\varepsilon_{cd} \approx \frac{f'''(x)}{6}h^2$$

Ridders method - smart variation of false position

Solve f(x) = 0 with the following approximation of the function $f(x) = g(x) \exp(-C(x - x_r))$, where g(x) = a + bx i.e. linear. In this case if $g(x_0) = 0$ then $f(x_0) = 0$, but g(x) = 0 is trivial to solve.

One can say that

$$g(x) = f(x) \exp(C(x - x_1)) = a + bx$$

We chose $x_r = x_1$

Ridders method implementation

- bracket the root between x_1 and x_2 , i.e. function must have different signs at these points: $f(x_1) \times f(x_2) < 0$
- ② find the mid point $x_3 = (x_1 + x_2)/2$
- find new approximation for the root

$$x_4 = x_3 + sign(f_1 - f_2) \frac{f_3}{\sqrt{f_3^2 - f_1 f_2}} (x_3 - x_1)$$

where $f_1 = f(x_1), f_2 = f(x_2), f_3 = f(x_3)$

- lacktriangle check if x_4 satisfies convergence condition and we should stop
- \bullet rebracket the root, i.e. assign new x_1 and x_2 , using old values
 - one end of the bracket is x_4 and $f_4 = f(x_4)$
 - the other is whichever of (x_1, x_2, x_3) is closer to x_4 and provides proper bracket.
- proceed to step 2

Nice features: x_4 is guaranteed to be inside the bracket, convergence of the algorithm is quadratic per cycle (m = 2). But it requires evaluation of the f(x) twice for f_3 and f_4 thus it is actually $m = \sqrt{2}$.

8/10

Root finding algorithm gotchas

Root finding algorithm gotchas

Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.

Root finding algorithm gotchas

Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.

Newton-Raphson and secant algorithm are usually fast but starting points need to be close enough to the root.

Root finding algorithms summary

Root bracketing algorithms

- bisection
- false position
- Ridders

Pro

 robust i.e. always converge.

Contra

- usually slower convergence
- require initial bracketing

Non bracketing algorithms

- Newton-Raphson
- secant

Pro

- faster
- no need to bracket (just give a reasonable starting point)

Contra

may not converge

See Matlab built in function fzero for equivalent tasks.