Notes

Notes

Transistors

Eugeniy E. Mikhailov

Eugenly Mikhailov (W&M) Electronics Transistors

- invented in 1947
- amplify current
- lower power consumption
- cheap for mass production
- robust to vibration
- long working time (decades) when properly used
- replaced vacuum tube
- building block of modern electronics

Some areas where vacuum tube are still good

- ultra high voltage applications (more than 1000 V)
- radiation prone locations

Bipolar junction Transistor (BJT)

NPN-transistor

Eugeniy Mikhailov (W&M)

PNP-transistor

Electronics 1

Electronics 1

Notation

• Base-emitter current (*I*_{be})

Eugeniy Mikhailov (W&M)

- Collector-emitter current (Ice)
- Base-emitter voltage difference (*V_{be}* = *V_b* - *V_e*)
- Collector-emitter voltage difference (*V_{ce}* = *V_c* - *V_e*)

Notes

Simple NPN-transistor rules

To support shown currents direction

ø

Eugeniy Mikhailov (W&M) Electronics Simple NPN-transistor rules

To support shown currents direction

• V_{ce} > 0

Simple NPN-transistor rules

To support shown currents direction

• *V_{ce}* > 0

Eugeniy Mikhailov (W&M)

- V_{be} > 0
 - $\bullet\,$ since, it is forward biased diode $\,V_{be}\approx 0.6$ V

Electronics 1

Electronics 1

5/12

Simple NPN-transistor rules

To support shown currents direction

- V_{ce} > 0
- *V_{be}* > 0

Eugeniy Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

- $\bullet\,$ since, it is forward biased diode $\,V_{be}\approx 0.6$ V
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

Notes

Notes

Electronics 1

Notes

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- $V_{be} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.
- If above holds true then

Eugeniy Mikhailov (W&M) Electropics Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- $V_{be} > 0$
 - $\bullet\,$ since, it is forward biased diode $\mathit{V_{be}}\approx0.6~V$
- V_{cb} > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule

If above holds true then

• $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier

Eugeniv Mikhailov (W&M) Electronics Simple NPN-transistor rules

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
- since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$
- V_{cb} > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

Eugeniy Mikhailov (W&M)

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes h_{fe}) \approx 100 . . . 200

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- $V_{be} > 0$
- since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio
- β (or sometimes h_{fe}) \approx 100 . . . 200 • $I_e = I_{be} + I_{ce} = (\beta + 1)I_{be} \approx \beta I_{be}$ < 🗗 >

Notes

Simple PNP-transistor rules

Notes

Apply the same rules as before for NPN BJT but multiply currents and voltages by -1. Hints

- the arrow indicates the direction in which current is supposed to flow.
- the arrow always connects the base and emitter.

Notes

Remember β is not a constant!

It depends on many parameters

- temperature
- collector current

• varies from device to device even in the same batch

Good design should not depend on β value.

Constant current source

Eugeniv Mikhailov (W&M)

Current through the load resistor does not depend on the load resistance.

Electronics 1

Electronics

Constant current source

ugeniy Mikhailov (W&M)

Current through the load resistor does not depend on the load resistance.

$$I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6 V}{R_{set}}$$

This is actually a sample of bad design since the current through the load depends on β .

Notes

Constant current source

V_{ctrl} R_{set} B

Current through the load resistor does not depend on the load resistance.

$$V_{cc} \qquad I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6V}{R_{set}}$$
This is actually a sample of bad design since the current through the load depends on β .
(A)
$$V_c = V_{cc} - R_L I_L$$

Electropice

Eugeniy Mikhailov (W&M) Constant current source

Current through the load resistor does not depend on the load resistance.

$$V_{ctrl} \xrightarrow{R_{set}} B$$

$$V_{c$$

$$h = h = \beta h = \beta \frac{V_{ctrl} - .6V}{V_{ctrl} - .6V}$$

This is actually a sample of bad design since
the current through the load depends on
$$\beta$$
.

us current on current

$$I_{sat} = max(I_L) \leq rac{V_{cc} - V_b}{R_L} pprox rac{V_{cc}}{R_L}$$

Constant current source (continued)

Eugeniv Mikhailov (W&M)

Electronics 1

Electronics 1

Constant current source. Power dissipation.

Transistor power dissipation

Eugeniy Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$
Since
$$V_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_L^2$$

Electronics 1

Notes

Notes

Notes

Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Since
$$V_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_{L}$$

$$P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_{L}^{2}$$

Maximum power dissipation in transistor

ø

Eugeniy Mikhailov (W&M) Electronics 1 Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$
Since
$$V_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L$$

$$A_{be} \leq V_{ce} , I_{ce} = R_{trans}I_L^2$$

$$A_{be} \leq V_{ce} , I_{ce} = R_{trans}I_L^2$$

$$A_{be} \leq V_{ce} , I_{ce} = R_{trans}I_L^2$$

Eugeniy Mikhailov (W8M) Electronics 1 Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Since

$$V_{ac} \xrightarrow{V_{ac}} P_{trans} \approx V_{ce} I_{ce}, \text{ and } I_{ce} = I_L$$

$$V_{ac} \xrightarrow{V_{ac}} P_{trans} \approx V_{ce} I_{ce}, \text{ and } I_{ce} = I_L$$

$$V_{ac} \xrightarrow{V_{ac}} P_{trans} \approx V_{ce} I_{ce} = R_{trans} I_L^2$$

$$Maximum power dissipation in transistor$$

$$is when R_{trans} = R_L$$

$$max(P_{trans}) = \frac{V_{cc}^2}{4R_L}, \text{ when } I_L = \frac{V_{cc}}{2R_L}$$

Voltage controlled switch

Eugeniy Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

When properly designed outcome does not depend on reasonable variations of $\boldsymbol{\beta}$

11/12

Notes

10/12

Notes

Notes

Eugeniy Mikhailov (W&M) Emitter follower

Electronics 1

Eugeniy Mikhailov (W&M) Emitter follower

 V_{cc}

 ${\rm R}_{\rm L}^{-}$

Eugeniy Mikhailov (W&M)

 V_{out}

 V_{in}

 $V_{out} = V_{in} - 0.6V$ Gain. What gain? We achieved the input impedance increase.

Electronics 1

Electronics 1

$$R_{input} = rac{V_{in}}{I_{be}} pprox R_L(eta+1)$$

. .

As a result our V_{in} source is not overloaded and our load receive all required current (as long as the collector power supply can support it).

(**1**1)

Notes

12/12

12/12

12/12

Notes