Filters.

Eugeni E. Mikhailov

The College of William & Mary
Recall that power dissipated by element is

\[ P = VI \]

where \( V \) and \( I \) are real.

Since we use a substitute

\( V \cos(\omega t) \rightarrow Ve^{i\omega t} \) and \( I \cos(\omega t) \rightarrow Ie^{i\omega t} \),

we need to write

\[ P = \text{Re}(V)\text{Re}(I) \]

Recall the Ohm’s law

\[ V = ZI \]
Power dissipation by a reactive element

**Theorem**

Average power dissipated by a reactive element (C or L) is 0

*Let's use as example an inductor.*

\[
Z_L = i\omega L = e^{i\frac{\pi}{2}}\omega L, \quad I_L = I_p e^{i\omega t}
\]

\[
V_L = Z_L I_L = e^{i\frac{\pi}{2}}\omega L I_L = \omega L I_p e^{i(\omega t + \frac{\pi}{2})}
\]

\[
Re(I_L) = I_p \cos(\omega t), \quad Re(V_L) = -\omega I_p L \sin(\omega t)
\]

*Thus average power dissipated by the inductor*

\[
P = \int_0^T Re(I_L) Re(V_L) dt = -\int_0^T I_p \cos(\omega t) \omega I_p L \sin(\omega t) dt
\]

\[
P = -\omega I_p^2 L \int_0^T \cos(\omega t) \sin(\omega t) dt = \omega I_p^2 L \int_0^T \frac{1}{2} \sin(2\omega t) dt = 0
\]
Fourier transform

If function $f(t)$ goes to zero at $\pm \infty$ then $\hat{f}(\omega)$ exists such as

$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega t}d\omega$$
Transfer function

Time domain

\[ V_{\text{out}}(t) = \int_{-\infty}^{t} H(t - \tau) V_{\text{in}}(\tau) d\tau \]

Frequency domain

\[ V_{\text{out}}(\omega) = G(\omega) V_{\text{in}}(\omega) \]

Where \( G \) is complex transfer function or gain.

**Definition**

\[ G(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)} = |G(\omega)| e^{i\phi(\omega)} \]

Often used values of \( G \) in dB

\[ dB = 20 \log_{10}(|G(\omega)|) \]
Simple example: RC low-pass filter

\[ G(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)} = \frac{1}{R + \frac{1}{i\omega C}} = \frac{1}{i\omega RC} \left( 1 + \frac{1}{i\omega RC} \right) = \frac{1}{1 + i\omega RC} \]

defining \( \omega_{3dB} = \frac{1}{RC} \)

\[ G(\omega) = \frac{1}{1 + i \frac{\omega}{\omega_{3dB}}} = \frac{1}{\sqrt{1 + \frac{\omega^2}{\omega_{3dB}^2}}} e^{i\phi}, \quad \phi = \text{atan}( -\frac{\omega}{\omega_{3dB}} ) \]

Note

\[ |G(\omega = \omega_{3dB})| = 20 \log_{10} \left( \frac{1}{\sqrt{1 + 1}} \right) = 20 \log_{10} \left( \frac{1}{\sqrt{2}} \right) = -3 \text{dB} \]
RC low-pass filter at $\omega = \frac{1}{RC}$

Signal vs time

Lissajous figure
RC low-pass filter at $\omega = 1/RC$

Signal vs time

Lissajous figure
RC low-pass filter at $\omega = 10/RC$

Signal vs time

Lissajous figure
Bode plots

Definition

Bode plot: plots of magnitude and phase of the transfer function, where $|G|$ is often plotted in dB

$$G(\omega) = \frac{1}{1 + i \frac{\omega}{\omega_{3dB}}}$$
RC high-pass filter

\[ G(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{R}{R + \frac{1}{i\omega C}} = \frac{i\omega RC}{1 + i\omega RC} = \frac{i\frac{\omega}{\omega_{3dB}}}{1 + i\frac{\omega}{\omega_{3dB}}} \]

with \( \omega_{3dB} = \frac{1}{RC} \)
RL filters

RL low-pass filter

\[ G(\omega) = \frac{R}{R + i\omega L}, \quad \omega_{3dB} = \frac{R}{L} \]

RL high-pass filter

\[ G(\omega) = \frac{i\omega L}{R + i\omega L} \]
Filters chain

Technically next stage loads the previous and it is quite hard to calculate total transfer function. However if we use rule of 10 to avoid overloading the previous filter. Every next stage resistor $R_{i+1} > 10R_i$ we can approximate

$$G_t(\omega) \approx G_1(\omega)G_2(\omega)G_3(\omega)\cdots G_n(\omega)$$
Example band pass filter

\[ G_t(\omega) \approx G_1(\omega)G_2(\omega) \]

\[ G_t(\omega) \approx \frac{1}{1 + i \frac{\omega}{\omega_{13dB}}} \frac{i\frac{\omega}{\omega_{23dB}}}{1 + i \frac{\omega}{\omega_{23dB}}} \]

For \( R_1 = 1k\Omega, R_2 = 100k\Omega,\)
\( C_1 = C_2 = .01 \mu F \)
RLC band pass filter

\[ \omega_0 = \frac{1}{\sqrt{LC}} \]

\[ R \]
\[ CV \]
\[ in(\omega) \]
\[ V_{out}(\omega) \]

\[ |G| \text{ (dB)} \]
\[ |G| \]
\[ -\pi/2 \]
\[ -\pi/4 \]
\[ 0 \]
\[ \pi/4 \]
\[ \pi/2 \]

\[ \text{Phase (rad)} \]
\[ \text{Phase (rad)} \]
\[ R=1 \]
\[ R=100 \]

\[ \omega/\omega_0 \]

\[ 0.01 \]
\[ 0.1 \]
\[ 1 \]
\[ 10 \]
\[ 100 \]
Notch filter - Band stop filter

\[ V_{\text{in}}(\omega) \quad V_{\text{out}}(\omega) \]

\[ \omega_0 = \frac{1}{\sqrt{LC}} \]

\[ R \quad C \quad L \]

\[ |G| \text{(dB)} \]

\[ \begin{align*}
-\pi/2 & \quad \pi/4 & \quad \pi/2 \\
-\pi/4 & \quad 0 & \quad \pi/2 \\
-\pi/2 & \quad 0 & \quad \pi/4
\end{align*} \]

\[ \begin{align*}
0.01 & \quad 0.1 & \quad 1 & \quad 10 & \quad 100 \\
|G| & \quad R=1 & \quad R=100
\end{align*} \]

Phase (rad)