Tunneling probability \(\sim e^{-2\pi^2 \frac{U_c}{E}} \)

\[
U_c = \frac{\hbar^2 Z_1 Z_2 e^2}{4E} = \frac{\hbar^2 Z_1 Z_2 e^2}{\left(\frac{3}{2}\right) \sqrt{2mE}}
\]

\[
= \frac{\hbar^2 Z_1 Z_2 e^2}{\frac{\sqrt{2}}{2} \sqrt{2mE}}
\]

\[
= \frac{\hbar^2 Z_1 Z_2 e^2}{\sqrt{2mE}}
\]

\[
= \frac{8\pi e}{\sqrt{2mE}}
\]

\[
\Rightarrow \quad \psi(E) = \frac{8\pi e}{\sqrt{2mE}} e^{-\frac{E}{kT}}
\]

Maxwell-Boltzmann distribution

\[
\rho(u) du \sim \frac{n}{(kT)^{3/2}} u^2 e^{-\frac{m}{2kT} u^2} du
\]

\[
\sim \frac{1}{(kT)^{3/2}} \sqrt{2E} e^{-\frac{E}{kT}} dE = n_d dE
\]

\[
\nu = \sqrt{\frac{2E}{m}}
\]

\[
d\nu = \sqrt{\frac{2E}{m}} \frac{dE}{2E}
\]
\[r = \sum_{i} \int \frac{h_i n_i \sigma(E) S(E) \frac{hE}{E}}{(kT)^{3/2}} dE \]

\[\approx n_i \frac{1}{(kT)^{3/2}} \int \frac{S(E) e^{-E/kT}}{E^{3/2}} dE \]

\[\approx n_i \frac{1}{(kT)^{3/2}} \int S(E) e^{-E/kT} dE \]

\[MB \text{ distribution contributions} \]

\[\text{penetration probability} \]

\[\text{Gamov peak} \]

\[\max \text{ at } E_0 = \left(\frac{6kT}{2} \right)^{2/3} \text{ assuming } S(E) = \text{const} \]

\[\text{The higher the temperature the faster the reaction goes} \]

\[\text{For same } B \]
So far we considered collision of 2 different elements.

But if we looking in fusion of H to He, the reaction is

\[4 \cdot \text{H} \rightarrow \text{He} + 2 \text{e}^+ + 2 \nu_e + 2 \gamma \]

four particle collision required
this is highly improbable

Most likely it realised in a chain
when first 2 particles strucked,
then one more, and yet one more

We will use notation

\[^{A}_{Z}X \]

protons + neutrons

number of protons

element

this uniquely identify chemical properties and thus this
Proton-Proton chain (PP I)

\[^1H + ^1H \rightarrow \frac{2}{1}H + e^++\bar{\nu}_e \text{ (requires } p^+ \rightarrow n + e^++\bar{\nu}_e) \]

\[^2H + ^1H \rightarrow \frac{3}{2}He + Y \]

\[\frac{3}{2}He + \frac{3}{2}He \rightarrow \frac{4}{2}He + 2^1H \]

\[\text{High binding energy!! very stable} \]

\[\text{PP II} \]

\[\frac{3}{2}He + \frac{4}{2}He \rightarrow \frac{6}{2}Be + Y \]

\[^4Be + e^- \rightarrow \frac{4}{3}Li + \bar{\nu}_e \]

\[\frac{3}{2}Li + ^1H \rightarrow 2^2He \]

\[\text{PP III} \]

\[^4Be + ^1H \rightarrow \frac{8}{5}B + Y \]

\[\frac{8}{5}B \rightarrow ^8Be + e^+ + \bar{\nu}_e \]

\[^8Be \rightarrow 2^4He \]

Energy generation of all this chains

Energy generation of all this chains (concentration of H)

\[E_0 \approx E_0 \cdot T_6^{\alpha} \cdot X^2 \text{ where } T_6 = \frac{T}{10^6K} \]

\[\frac{W}{kg} \sim 1.08 \cdot 10^{-11} \frac{W \cdot m^2}{kg^2} \text{ density} \]
CNO Cycle

1st Branch

\[_{6}^{12}C + _{1}^{1}H \rightarrow _{7}^{13}N + \gamma \]

\[_{7}^{13}N \rightarrow _{6}^{12}C + e^{+} + \bar{\nu}_{e} \]

\[_{6}^{12}C + _{1}^{1}H \rightarrow _{7}^{13}N + \gamma \]

\[_{8}^{14}N + _{1}^{1}H \rightarrow _{8}^{15}O + \gamma \]

\[_{8}^{15}O \rightarrow _{7}^{14}N + e^{+} + \bar{\nu}_{e} \]

\[_{7}^{15}N + _{1}^{1}H \rightarrow _{6}^{12}C + _{2}^{4}He \quad \text{(Carbon is catalyst)} \]

2nd Branch (0.04% of time)

\[_{8}^{15}N + _{1}^{1}H \rightarrow _{8}^{16}O + \gamma \]

\[_{8}^{16}O + _{1}^{1}H \rightarrow _{9}^{17}F + \gamma \]

\[_{9}^{17}F \rightarrow _{8}^{16}O + e^{+} + \bar{\nu}_{e} \]

\[_{8}^{16}O + _{1}^{1}H \rightarrow _{7}^{14}N + _{2}^{4}He \]

\[E_{\text{CNO}} \sim E_{0}e^{5XX_{\text{CNO}}T_{6}} \quad \text{(9.9)} \]

\[E_{0} = 8.24 \times 10^{-37} \text{ Wm}^{-3} \text{kg}^{-2} \]

- sharp dependence on temperature
The triple alpha process — burning of He

\[_2^4 \text{He} + _2^4 \text{He} \rightarrow _4^8 \text{Be} \]

\[_4^8 \text{Be} + _2^4 \text{He} \rightarrow _6^{12} \text{C} + \gamma \]

(recall that \(_1^2 \text{He}^+ \) is a particle)

Above looks like

\[3 \cdot _2^4 \text{He}
\rightarrow _6^{12} \text{C} + \gamma \]

\[E_{3\alpha} \leq E_{0,3\alpha} \frac{A^2}{V_3} \]

\(T_8 \) = super sharp dependence on \(T \)

\[T_8 = T/10^8 \]

3α - process kicks in at high temperatures
Star evolution

Notice that we convert $H \rightarrow He$ but it requires 4 H to make one He, so we reducing number of “free” particles recall $p = n k T$, $n = \frac{N}{V}$ so

if $N/4$ than $p < p_{eq}$ which mean that hydrostatic equilibrium is not maintained and star collapses. This will lead to increase of temperature \Rightarrow fusion ignites for reactions which go at higher temperatures (3d for example) and a star stabilizes yet again

Q: what would happen if somehow we replace H with something else in 1 to 1 fashion? Pressure will stay constant since $p = \frac{N}{V} k T$
Q: Let's say we want to settle around a star and we are looking for one which should last the longest. Should we choose a lighter or more massive one?

Naively more fuel (mass) the longer it lasts.

But Recall:

\[L \text{ grows with mass} \]

\[L(120M_\odot) = 10^6 L(M_\odot) \]

"Burn time" = \[\frac{K \cdot M c^2}{L_\odot} \]

\[\approx \frac{K \cdot 120M_\odot c^2}{10^6 L_\odot} \]

Conversion coef. \(0.007 \) M → He

Recall

\[\frac{120}{10^6} T_{\text{Sun}} = T_{\text{Sun}} \frac{1}{10^4} \]