
A note on error propagation

We are trying to find the change (uncertainty) in some function f(x, y, z)
when x, y and z are subject to change (i.e., have some uncertainty). Assum-
ing first that only x has an uncertainty δx and that our measured values
(distinct from the variables x, y and z) are x0, y0, z0, we have:
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For uncorrelated uncertainties on x, y and z, this leads to the general
formula:
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Where we evaluate f() and it’s derivatives at (x0, y0, z0).

Example from the e/m lab

We’d like to propagate errors on e/m. First we write down a function for
e/m in terms of the measured variables:

e

m
=

[
125

32

a2

µ20N
2

]
V

I2r2
= C

V

I2r2
(5)

where C is a constant and V, I, r are the measured variables. We can now
propagate errors and find the uncertainty (e/m)j , the measured value of e/m
for trial j. We set e/m = f(V, I, r) and then (e/m)j = f(Vj , Ij , rj) ≡ fj .
The uncertainty in fj is:
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now we can rearrange a little bit
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The terms
δVj
Vj

,
δIj
Ij

,
δrj
rj

are just fractional uncertainties in the measured

voltage, current and radius. In this case, you had something like
δVj
Vj
≈

0.05V
250V = 0.02%, something similar for I, but

δrj
rj
≈ 0.3 cm

4.0 cm = 7.5%, so the last

term in Eq. 9 completely dominates the other two. Therefore:
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This is the sort of analysis I’d like to see in a report and Eq. 10 is what
you’d code into an Igor or Excel spreadsheet. Of course Eq. 9 would also
work, you’d just miss out on some intuition about what was driving the
uncertainties in your experiment and could be more vulnerable to typos in
the formula.

A slightly different approach

What if derivatives of f are messy to evaluate? For example as in the
electron diffraction lab when you are trying to propagate uncertainties on
sin θ which involves a double angle formula, sines and inverse sines of the
quantities you measured. There is a simple thing you can do, going back to
Eq. 1:

|δf(x0, y0, z0)| = |f(x0 + δx, y0, z0)− f(x0, y0, z0)| (11)

which can be generalized to multiple dimensions as:
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+ [f(x0, y0, z0 + δz)− f(x0, y0, z0)]
2

That is, we just reevaluate f when we shift x0, y0, z0. The shifts are
independent so long as the uncertainties themselves are independent, and
we add all shifts in quadrature. This avoids taking derivatives and may, or
may not, be less messy. Also, note, I claim it’s a little better to do this:
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That is, average the effect of shifting by ±δx.

Final Note

Whatever you do, be clear about what you are assuming for input uncer-
tainties and the specific formula for δf ! We don’t need to see all steps in
deriving δf but we must be able to plug your xi, yi, zi and δxi, δyi, δzi into
your formula to get your δfi.
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