
Chapter 1

Electron Diffraction

Experiment objectives: observe diffraction of the beam of electrons on a graphitized
carbon target, and to calculate the intra-atomic spacings in the graphite.

History

A primary tenet of quantum mechanics is the wavelike properties of matter. In 1924, graduate
student Louis de Broglie suggested in his dissertation that since light has both particle-
like and wave-like properties, perhaps all matter might also have wave-like properties. He
postulated that the wavelength of objects was given by λ = h/p, where where h is Planck’s
constant, and p = mv is the momentum. This was quite a revolutionary idea, since there was
no evidence at the time that matter behaved like waves. In 1927, however, Clinton Davisson
and Lester Germer discovered experimental proof of the wave-like properties of matter-
particularly electrons (This discovery was quite by mistake!). They were studying electron
reflection from a nickel target. They inadvertently crystallized their target while heating it,
and discovered that the scattered electron intensity as a function of scattering angle showed
maxima and minima. That is, electrons were “diffracting” from the crystal planes much
like light diffracts from a grating, leading to constructive and destructive interference. Not
only was this discovery important for the foundation of quantum mechanics (Davisson and
Germer won the Nobel Prize for their discovery), but electron diffraction is an extremely
important tool used to study new materials. In this lab you will study electron diffraction
from a graphite target, measuring the spacing between the carbon atoms.

Theory

Consider planes of atoms in a crystal as shown in Fig, 1.1 separated by distance d. Electron
”waves” reflect from each of these planes. Since the electron is wave-like, the combination
of the reflections from each interface will lead to an interference pattern. This is completely
analogous to light interference, arising, for example, from different path lengths in the Fabry-
Perot or Michelson interferometers. The de Broglie wavelength for the electron is given by:
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Figure 1.1: Electron Diffraction from atomic layers in a crystal.

λ = h/p, where p can be calculated by knowing the energy of the electrons when they leave
the “electron gun”:

p2

2m
= eVa, (1.1)

where Va is the accelerating potential. The condition for constructive interference is that the
path length difference for the two waves shown in Fig. 1.1 be a multiple of a wavelength.
This leads to Bragg’s Law:

nλ = 2d sin θ (1.2)

where n = 1, 2, . . . is integer. In this experiment, only the first order diffraction n = 1 is
observed. Therefore, the intra-atomic distance in a crystal can be calculated by measuring
the angle of electron diffraction and their wavelength (i.e. their momentum):

d =
λ

2 sin θ
=

1

2 sin θ

h√
2emeVa

(1.3)

where h is Planck’s constant, e is the electronic charge, me is the electron’s mass, and Va is
the accelerating voltage.

Experimental Procedure

Equipment needed: Electron diffraction apparatus and power supply, tape, ruler.
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Safety

You will be working with high voltage. Power supply will be connected for you, but inspect
the apparatus when you arrive before turning the power on. In any wires are unplugged, ask
an instructor to reconnect them. Also, before turning the power on, identify the high voltage
contacts on the electron diffraction tube, make sure these connections are well-protected and
cannot be touched by accident while taking measurements.

Figure 1.2: Electron Diffraction Apparatus.

Setup

The diagram of the apparatus is given in Fig.1.2. An electron gun (consisting of a heated
filament to boil electrons off a cathode and an anode to accelerate them to, similar to the
e/m experiment) “shoots” electrons at a carbon (graphite) target.

The electrons diffract from the carbon target and the resulting interference pattern is
viewed on a phosphorus screen.

The graphitized carbon is not completely crystalline but consists of crystal sheets in
random orientations. Therefore, the constructive interference patterns will be seen as bright
circular rings. For the carbon target, two rings (an outer and inner, corresponding to different
crystal planes) will be seen, corresponding to two spacings between atoms in the graphite
arrangement, see Fig. 1.3
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Figure 1.3: Spacing of carbon atoms. Here subscripts 10 and 11 correspond to the crystal-
lographic directions in the graphite crystal.

Data acquisition

Acceptable power supply settings:
Filament Voltage VF 6.3 V ac/dc (8.0 V max.)
Anode Voltage VA 1500 - 5000 V dc
Anode Current IA 0.15 mA at 4000 V ( 0.20 mA max.)

1. Switch on the heater and wait one minute for the oxide cathode to achieve thermal
stability.

2. Slowly increase Va until you observe two rings to appear around the direct beam.
Slowly change the voltage and determine the highest achievable accelerating voltage,
and the lowest voltage when the rings are visible.

3. Measure the diffraction angle θ for both inner and outer rings for 5-10 voltages from
that range, using the same masking tape (see procedure below). Each lab partner
should repeat these measurements (using an individual length of the masking tape).

4. Calculate the average value of θ from the individual measurements for each voltage Va.
Calculate the uncertainties for each θ.

Measurement procedure for the diffraction angle θ

To determine the crystalline structure of the target, one needs to carefully measure the
diffraction angle θ. It is easy to see (for example, from Fig. 1.1 ) that the diffraction angle
θ is 1/2 of the angle between the beam incident on the target and the diffracted beam to a
ring, hence the 2θ appearing in Fig. 1.4. You are going to determine the diffraction angle θ
for a given accelerated voltage from the simple geometrical ratio

L sin 2θ = R sinφ, (1.4)
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Figure 1.4: Geometry of the experiment.

where the distance between the target and the screen L = 0.130 m is controlled during the
production process to have an accuracy better than 2%. Note, this means that the electron
tubes are not quite spherical.

The ratio between the arc length and the distance between the target and the radius of
the curvature of the screen R = 0.066 m gives the angle φ in radian: φ = s/2R. To measure
φ carefully place a piece of masking tape on the tube so that it crosses the ring along the
diameter. Mark the position of the ring for each accelerating voltage, and then remove the
masking tape and measure the arc length s corresponding to each ring. You can also make
these markings by using the thin paper which cash register receipts are printed on.

Data analysis

Use the graphical method to find the average values for the distances between the atomic
planes in the graphite crystal d11 (outer ring) and d10 (inner ring). To determine the combi-
nation of the experimental parameters that is proportional to d, one need to substitute the
expression for the electron’s velocity Eq.(1.1) into the diffraction condition given by Eq.(1.2):

2d sin θ = λ =
h√

2mee

1√
Va

(1.5)

Make a plot of 1/
√
Va versus sin θ for the inner and outer rings (both curves can be on

the same graph). Fit the linear dependence and measure the slope for both lines. From the
values of the slope find the distance between atomic layers dinner and douter.

Compare your measurements to the accepted values : dinner = d10 = .213 nm and
douter = d11 = 0.123 nm.
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Looking with Electrons

The resolution of ordinary optical microscopes is limited (the diffraction limit) by the
wavelength of light (≈ 400 nm). This means that we cannot resolve anything smaller than
this by looking at it with light (even if we had no limitation on our optical instruments).
Since the electron wavelength is only a couple of angstroms (10−10 m), with electrons as
your “light source” you can resolve features to the angstrom scale. This is why “scanning
electron microscopes” (SEMs) are used to look at very small features. The SEM is very
similar to an optical microscope, except that “light” in SEMs is electrons and the lenses
used are made of magnetic fields, not glass.
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