Transistors: Field-effect transistors

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 08

FET pros

- very high input impedance

FET cons

- JFET - impedance $10^{12} \Omega$
- MOSFET - impedance $10^{14} \Omega$
- thus very small current into the base (pA range)
- as result very little power
consumption for the biasing
network
- can operate bidirectionally

Let's focus on NJFET

$$
\text { Gate } . \frac{f^{\text {Drain }}}{\text { Source }}
$$

General notes

- N-channel usually faster due to higher mobility of electrons vs holes
- current goes from drain to source (thus the names)
- drain and source are nearly identical
- thus sometimes gate is centered on some diagrams
$\xrightarrow{G}+H_{s}^{D}$
- can be used backwards with almost the same performance
- arrow indicates direction of the PN junction
$\xrightarrow{G} H_{L_{S}}^{D^{D}}$
- thus normal operation (low current into the gate) when $V_{G}<V_{S}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
V_{p} : pinch-off voltage (intrinsic parameter), $V_{p}<0$ for NJFETs it is called $V_{t h}$:threshold voltage for MOSFETs

- $V_{g s}<V_{p}$
- $I_{D}=0$
- $V_{g s}>0.6 \mathrm{~V}$
- device fails, remember about gate diode

- $V_{p}<V_{g s}<0.6 \mathrm{~V}$
- normal operation
- $I_{d}\left(V_{g s}, V_{d s}\right)$

| Eugeniy Mikhailo (W\&M) Electronics 1 | |
| :--- | :--- | :--- |
| $I_{d} \mathrm{VS} V_{D S}$ | |

Notes

Linear region

- $V_{D S}<V_{G S}-V_{p}$
- $I_{d}\left(V_{D S}, V_{G S}\right)=$ $k\left(2\left(V_{G S}-V_{p}\right) V_{D S}-V_{D S}^{2}\right)$ Saturation region
- $V_{D S}>V_{G S}-V_{p}$ - $I_{d}\left(V_{D S}, V_{G S}\right)=k\left(V_{G S}-V_{p}\right)^{2}$
k is a constant

Real I_{d} vs $V_{D s}$ linear region

Notes

- $V_{D S}<V_{G S}-V_{p}$

$$
\text { - Id }\left(V_{D S}\right)=k\left(2\left(V_{G S}-V_{p}\right) V_{D S}-V_{D S}^{2}\right) \approx 2 k\left(V_{G S}-V_{p}\right) V_{D S}
$$

Real I_{d} vs $V_{D S}$ saturation region

$I_{D S S}$ saturation drain current, depends on $V_{G S}$ and V_{D}

- $V_{D S}>V_{G S}-V_{p}$
- Id $\left(V_{D S}\right)=k\left(V_{G S}-V_{p}\right)^{2}$
$I_{D S S}$ saturation drain current, depends on $V_{G S}$ and V_{p}

NJFET voltage controlled divider

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NJFET constant current source

Transistor in the saturation region

FET source follower
Transistor in saturation region

$v_{\text {out }}=\frac{R_{S}}{R_{S}+1 / g_{m}} v_{\text {in }}$

$$
r_{t h}>1 / g_{m}
$$

$$
V_{\text {out }}>V_{\text {in }}
$$

$\begin{array}{cc}\text { Electronics } 1 & \mathrm{I}_{\mathrm{D}}-\text { Drain Current }_{(\mathrm{mA})}^{\text {Lecture } 08}\end{array}$ 13/14
FET source follower improved
Transistor in saturation region

Requires matched pair of transistors

$$
\begin{aligned}
v_{\text {out }} & =v_{\text {in }} \\
V_{\text {out }} & =V_{\text {in }} \\
R_{\text {th }} & =R_{s}
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

