Transistors applications: AC amplifiers

Eugeni E. Mikhailov

The College of William & Mary

Lecture 07
Summary of simple emitter follower

Advantages
- input impedance increase $Z_{in} = \beta R_e$
- power/current gain
- output does not depend on β
- simple
Summary of simple emitter follower

Advantages
- input impedance increase $Z_{in} = \beta R_e$
- power/current gain
- output does not depend on β
- simple

Disadvantages
- input signal must be positive
- even more it should be above 0.6 V
- no voltage gain
In real life signals usually swing around zero.
In real life signals usually swing around zero.

We need to do something with our simple emitter follower.
Real life signal

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower
Real life signal

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower
Solution 2: AC-coupled biased-amplifier
NPN and PNP emitter follower

NPN emitter follower

\[V_{cc} \quad \text{V}_{in} \quad \text{V}_{out} \quad \text{R}_e \]

\[V_0 - 0.6 \quad V_0 \quad -10 -5 0 5 10 \]

\[V_{in}(t) \quad V_{out}(t) \]

Eugeniy Mikhailov (W&M)
NPN and PNP emitter follower

NPN emitter follower

\[V_{cc} \]
\[R_e \]
\[V_{in} \]
\[V_{out} \]

-\[V_0 \]
-\[V_0 + 0.6 \]

-10 -5 0 5 10

\[t \]
\[V_{in}(t) \]
\[V_{out}(t) \]
NPN and PNP emitter follower

NPN emitter follower

PNP emitter follower
NPN and PNP emitter follower

NPN emitter follower

\[V_{cc} \]
\[V_{in} \]
\[R_e \]
\[V_{out} \]

\[V_{0} - 0.6V \]
\[V_{0} \]
\[t \]

PNP emitter follower

\[-V_{ee} \]
\[R_e \]
\[V_{in} \]
\[V_{out} \]

\[-V_{0} + 0.6V \]
\[-V_{0} \]
Push-Pull emitter follower

\[V_{cc} \]

\[R_L \]

\[V_{in} \]

\[V_{out} \]

\[V_{ee} \]

\[V_{0} - V_{0} + 0.6V \]

\[V_{0} - 0.6V \]

\[V_{0} \]

-10 -5 0 5 10

\[V_{in}(t) \]

\[V_{out}(t) \]
Push-Pull emitter follower

\[V_{cc} \]
\[R_L \]
\[V_{in} \]
\[V_{out} \]
\[-V_{ee} \]

\[V_{0} - 0.6V \]
\[V_{0} + 0.6V \]
\[-V_{0} \]

\[V_{in}(t) \]
\[V_{out}(t) \]
Push-Pull follower crossovers

\[V_0 - 0.6V \]

\[V_0 + 0.6V \]

\[V \]

\[-V_0 \]

\[V_{in}(t) \]

\[V_{out}(t) \]

Eugeniy Mikhailov (W&M)
Push-Pull follower crossovers

\[V_{in}(t) \quad V_{out}(t) \]

Eugeniy Mikhailov (W&M)
Push-Pull follower crossovers

\[V_{in}(t) = V_0 - 0.6V \]

\[V_{out}(t) = V_0 + 0.6V \]
Push-Pull emitter follower improved
Push-Pull emitter follower improved
AC-coupled emitter follower

Design rules
maximum output swing

\[V_e = \frac{V_{cc}}{2} \]

disregarding \(V_{be} = 0.6 \) V

\[V_b \approx V_e = \frac{V_{cc}}{2} \]

thus \(R_1 = R_2 \)

quiescent current
\[I_e = \frac{V_e}{R_e} \]

we want \(I_{R_1 + R_2} \gg I_b \) factor of 10 for a safe margin

\[I_{R_1 + R_2} \geq 10I_b = 10I_e / \beta \]

thus \(R_1 = R_2 \leq R_e \beta / 10 \)
AC-coupled emitter follower

Design rules

- maximum output swing
 - $V_e = V_{cc}/2$
- disregarding $V_{be} = 0.6$ V
 - $V_b \approx V_e = V_{cc}/2$
 - thus $R_1 = R_2$
- quiescent current $I_e = V_e/R_e$
- we want $IR_1+R_2 \gg I_b$
 - factor of 10 for a safe margin
 - $IR_1+R_2 \geq 10I_b = 10I_e/\beta$
 - thus $R_1 = R_2 \leq R_e\beta/10$
AC-coupled emitter follower: capacitors choice

From AC point of view
Input is RC high-pass
\[C = C_1, \quad R = R_1 || R_2 || \beta R_e \]
\[f_{3db} = \frac{1}{2\pi C_1 (R_1 || R_2 || \beta R_e)} \]
with above rules
\[R \approx \frac{R_1}{2} \]
Output is also RC high-pass
\[C = C_2, \quad R = R_L \]
\[f_{3db} = \frac{1}{2\pi C_2 R_L} \]
for unloaded filter
\[R_L \gg R_e \]
factor of 10 for a safe margin
\[R_L = 10 R_e \]
AC-coupled emitter follower: capacitors choice

From AC point of view

- **Input is RC high-pass**
 - \(C = C_1 \)
 - \(R = R_1 || R_2 || \beta R_e \)
 - \(f_{3db} = \frac{1}{2\pi} \frac{1}{C_1 (R_1 || R_2 || \beta R_e)} \)
 - with above rules \(R \approx R_1 / 2 \)
From AC point of view
- Input is RC high-pass
 - $C = C_1$
 - $R = R_1 \parallel R_2 \parallel \beta R_e$
 - $f_{3db} = \frac{1}{2\pi} \frac{1}{C_1(R_1 \parallel R_2 \parallel \beta R_e)}$
 - with above rules $R \approx R_1 / 2$
- Output is also RC high-pass
 - $C = C_2$
 - $R = R_L$
 - $f_{3db} = \frac{1}{2\pi} \frac{1}{C_2 R_L}$
 - for unloaded filter $R_L \gg R_e$
 - factor of 10 for a safe margin
 - $R_L = 10 R_e$
Common emitter (inverting) amplifier

\[V_{in} \]
\[V_{cc} \]
\[R_e \]
\[V_{out} \]
\[V_{out} = V_{cc} - R_c I_c \]
\[V_{out} = V_{cc} - \frac{(V_{in} - 0.6V)}{R_e} R_c \]
\[I_c = I_e = \frac{(V_{in} - 0.6V)}{R_e} \]
\[\text{gain } G = -\frac{R_c}{R_e} \]

Transistor model fails when \(R_e \) is attractive to put \(R_e = 0 \).
Common emitter (inverting) amplifier

- \(I_c = I_e = \frac{(V_{in} - 0.6\,V)}{R_e} \)
- \(V_{out} = V_{cc} - R_c I_c \)
- \(V_{out} = V_{cc} - R_c (V_{in} - 0.6\,V)/R_e \)
- \(V_{out} = (V_{cc} + (0.6\,V) R_c/R_e) - V_{in} R_c/R_e \)
- gain \(G = -R_c/R_e \)
- attractive to put \(R_e = 0 \)
 - transistor model fails
 - transistor emitter resistance
 - \(r_e = 25\,mV/I_c \)
 - gain \(G = -R_c/r_e \)
In the pass band we can neglect capacitors

\[V_{out} = V_{cc} - I_c R_C = V_{cc} - (I_{ce} + I_L) R_C = (V_{cc} - I_{ce} R_C) - I_L R_C = V_{th} - I_L R_{th} \]

Thévenin’s equivalent

\[V_{th} = V_{cc} - I_{ce} R_C \]

\[R_{th} = R_C \]

Rule of 10 must be satisfied

\[R_L \geq 10 R_C \]
In the pass band we can neglect capacitors

\[
V_{out} = V_{cc} - I_c R_c = V_{cc} - (I_{ce} + I_L) R_c
\]

\[
= (V_{cc} - I_{ce} R_c) - I_L R_c
\]

\[
= V_{th} - I_L R_{th}
\]
In the pass band we can neglect capacitors

\[V_{out} = V_{cc} - I_c R_c = V_{cc} - (I_{ce} + I_L) R_c \]
\[= (V_{cc} - I_{ce} R_c) - I_L R_c \]
\[= V_{th} - I_L R_{th} \]

Thévenin’s equivalent

\[V_{th} = V_{cc} - I_{ce} R_c \]
\[R_{th} = R_c \]
Common emitter amplifier signal output impedance

In the pass band we can neglect capacitors

\[V_{out} = V_{cc} - I_c R_c = V_{cc} - (I_{ce} + I_L) R_c \]
\[= (V_{cc} - I_{ce} R_c) - I_L R_c \]
\[= V_{th} - I_L R_{th} \]

Thévenin’s equivalent

\[V_{th} = V_{cc} - I_{ce} R_c \]
\[R_{th} = R_c \]

Rule of 10 must be satisfied

\[R_L \geq 10R_c \]
AC-coupled common emitter (inverting) amplifier

Design rules
- chose gain: $G = \frac{R_c}{R_e}$
- maximum output swing: $V_c = \frac{V_{cc}}{2}$
- quiescent current: $I_c = \frac{(V_{cc} - V_c)}{R_c} = \frac{V_{cc}}{2R_c}$
- $R_c = \frac{V_{cc}}{2I_c}$
- $R_e = \frac{R_c}{G}$

We want $I_R1 + R_2 \gg I_b$ factor of 10 for a safe margin:
- $I_R1 + R_2 \geq 10I_b = 10\frac{I_c}{\beta}$
- $R_1 + R_2 \leq \frac{V_{cc}}{\beta} \left(\frac{10I_c}{10} \right)$

$V_b = V_e + 0.6V$

$\frac{R_2}{R_1 + R_2} = \frac{V_b}{V_{cc}}$
AC-coupled common emitter (inverting) amplifier

Design rules

- chose gain $G = \frac{R_c}{R_e}$
- maximum output swing
 - $V_c = \frac{V_{cc}}{2}$
- quiescent current
 - $I_c = \frac{(V_{cc} - V_c)}{R_c} = \frac{V_{cc}}{2R_c}$
 - $R_c = \frac{V_{cc}}{2I_c}$
 - $R_e = \frac{R_c}{G}$
- we want $I_{R_1 + R_2} \gg I_b$
 - factor of 10 for a safe margin
 - $I_{R_1 + R_2} \geq 10I_b = 10I_c/\beta$
 - $R_1 + R_2 \leq \frac{V_{cc}\beta}{10I_c}$
- $V_b = V_e + 0.6\,\text{V}$
- $R_2/(R_1 + R_2) = \frac{V_b}{V_{cc}}$
AC-coupled (inverting) amplifier capacitors choice

\[V_{cc} \]
\[V_{in} \]
\[R_e \]
\[V_{out} \]
\[R_1 \]
\[R_2 \]
\[C_1 \]
\[C_2 \]
\[R_L \]

See notes about AC-coupled emitter follower

Eugeniy Mikhailov (W&M)
AC-coupled (inverting) amplifier capacitors choice

Input equivalent

\[\begin{align*}
V_{cc} & \quad \text{Input equivalent} \\
\beta R_e & \quad \text{Output equivalent}
\end{align*} \]
AC-coupled (inverting) amplifier capacitors choice

Input equivalent

Output equivalent

See notes about AC-coupled emitter follower

Eugeniy Mikhailov (W&M)
AC-coupled (inverting) amplifier capacitors choice

Input equivalent

Output equivalent

See notes about AC-coupled emitter follower
AC-coupled (inverting) amplifier with HF gain boost

Think what happens with equivalent impedance of R_e at high frequencies