Transistors applications: AC amplifiers

Eugeny E. Mikhailov
The College of William & Mary

Lecture 07

Summary of simple emitter follower

Advantages
- input impedance increase $Z_{in} = \beta R_e$
- power/current gain
- output does not depend on β
- simple

Disadvantages
- input signal must be positive
- even more it should be above 0.6 V
- no voltage gain

Real life signal

In real life signals usually swing around zero.
Real life signal

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower
Solution 2: AC-coupled biased-amplifier

NPN and PNP emitter follower

Notes
NPN and PNP emitter follower

NPN emitter follower

\[V_{cc} \]

[\text{R}]

\[V_{in} \]

\[V_{out} \]

\[V_0 - 0.6 \]

\[t \]

\[V_{in}(t) \]

\[V_{out}(t) \]

PNP emitter follower

\[-V_{ee} \]

[\text{R}]

\[V_{in} \]

\[V_{out} \]

\[-V_0 + 0.6 \]

\[t \]

\[V_{in}(t) \]

\[V_{out}(t) \]

Push-Pull emitter follower

\[V_{cc} \]

[\text{R}]

\[V_{in} \]

\[V_{out} \]

\[V_0 - 0.6 \]

\[t \]

\[V_{in}(t) \]

\[V_{out}(t) \]
Push-Pull emitter follower

![Push-Pull emitter follower circuit diagram]

Notes

Push-Pull follower crossovers

![Push-Pull follower crossovers diagram]

Notes

Notes
Push-Pull emitter follower improved

Design rules
- Maximum output swing
 - \(V_e = \frac{V_{cc}}{2} \)
- Disregarding \(V_{be} = 0.6 \text{ V} \)
 - \(V_b = \frac{V_c}{2} \)
 - Thus \(R_1 = R_2 \)
- Quiescent current \(I_q = \frac{V_c}{R_e} \)
- We want \(I_{R1+R2} \gg I_b \)
 - Factor of 10 for a safe margin
 - \(I_{R1+R2} \geq 10I_b = 10I_e/\beta \)
 - Thus \(R_1 = R_2 \leq R_e \beta/10 \)

AC-coupled emitter follower

Notes
From AC point of view
- Input is RC high-pass
 - \(C = C_1\)
 - \(R = R_1 (|R_2| + |R_6|)\)
 - \(f_{ab} = \frac{1}{2 \pi R C}\)
 - with above rules \(R \approx R_1 / 2\)

- Output is also RC high-pass
 - \(C = C_2\)
 - \(R = R_6\)
 - \(f_{ab} = \frac{1}{2 \pi R C}\)
 - for unloaded filter \(R_L \gg R_6\)
 - factor of 10 for a safe margin
 - \(R_L = 10 R_6\)

Common emitter (inverting) amplifier

Notes

Common emitter (inverting) amplifier

- $I_C = I_B = (V_{IN} - 0.6V) / R_E$
- $V_{OUT} = V_{CC} - I_C R_C$
- $V_{OUT} = V_{CC} - R_E (V_{IN} - 0.6V) / R_E$
- $V_{OUT} = (V_{CC} + (0.6V) R_C / R_E) - V_B R_C / R_E$
- gain $G = -R_C / R_E$
- attractive to put $R_E = 0$
- transistor model fails
- transistor emitter resistance $r_e = 25mV / I_C$
- gain $G = -R_C / r_e$

Notes

Common emitter amplifier signal output impedance

In the pass band we can neglect capacitors

$V_{OUT} = V_{CC} - I_C R_C = V_{CC} - (I_B + I_L) R_C$

$= (V_{CC} - I_B R_C) - I_L R_C$

$= V_{TH} - I_L R_{TH}$

Notes

Thévenin's equivalent

$V_{TH} = V_{CC} - I_B R_C$

$R_{TH} = R_C$

Notes
In the pass band we can neglect capacitors

\[V_{\text{out}} = V_{cc} - I_c R_c = V_{cc} - (I_{ce} + I_b) R_c \]
\[= (V_{cc} - I_{ce} R_e) - I_b R_c \]
\[= V_{th} - I_b R_c \]

\(R_L \geq 10 R_c \)

Design rules

- Chose gain \(G = R_c / R_e \)
- Maximum output swing
 - \(V_c = V_{cc} / 2 \)
- Quiescent current
 - \(I_c = (V_{cc} - V_c) / R_c = V_{cc} / 2 R_c \)
 - \(R_e = V_{cc} / (2 I_c) \)
- \(R_b = R_c / G \)
- We want \(I_{b1} + R_b \gg I_b \)
 - Factor of 10 for a safe margin
 - \(I_{b1} + R_b \geq 10 I_b = 10 I_c / 3 \)
 - \(R_b + R_c \leq V_{cc} / (10 I_c) \)
- \(V_b = 0.6 V \)
- \(R_2 / (R_1 + R_2) = V_b / V_{cc} \)
AC-coupled (inverting) amplifier capacitors choice

Input equivalent

Output equivalent

See notes about AC-coupled emitter follower

AC-coupled (inverting) amplifier with HF gain boost

Think what happens with equivalent impedance of R_e at high frequencies