Filters.

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 04

Power dissipation

Recall that power dissipated by element is

$$
P=V I
$$

where V and I are real.
Since we use a substitute
$V \cos (\omega t) \rightarrow V e^{i \omega t}$ and $I \cos (\omega t) \rightarrow I e^{i \omega t}$,
we need to write

$$
P=\operatorname{Re}(V) \operatorname{Re}(I)
$$

Recall the Ohm's law

$$
V=Z I
$$

Power dissipation by a reactive element

Theorem

Average power dissipated by a reactive element (C or L) is 0 Lets use as example an inductor.

$$
\begin{gathered}
Z_{L}=i \omega L=e^{i \frac{\pi}{2}} \omega L, I_{L}=I_{p} e^{i \omega t} \\
V_{L}=Z_{L} I_{L}=e^{i \frac{\pi}{2}} \omega L I_{L}=\omega L I_{p} e^{\left.i \omega t+\frac{\pi}{2}\right)} \\
\operatorname{Re}\left(I_{L}\right)=I_{p} \cos (\omega t), \operatorname{Re}\left(V_{L}\right)=-\omega I_{p} L \sin (\omega t)
\end{gathered}
$$

Thus average power dissipated by the inductor

$$
\begin{gathered}
P=\int_{0}^{T} \operatorname{Re}\left(I_{L}\right) \operatorname{Re}\left(V_{L}\right) d t=-\int_{0}^{T} I_{p} \cos (\omega t) \omega I_{\rho} L \sin (\omega t) d t \\
P=-\omega I_{p}^{2} L \int_{0}^{T} \cos (\omega t) \sin (\omega t) d t=\omega I_{p}^{2} L \int_{0}^{T} \frac{1}{2} \sin (2 \omega t) d t=0
\end{gathered}
$$

Fourier transform

If function $f(t)$ goes to zero at $\pm \infty$ then $\hat{f}(\omega)$ exists such as

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

Transfer function

Time domain

$$
V_{\text {out }}(t)=\int_{-\infty}^{t} H(t-\tau) V_{\text {in }}(\tau) d \tau
$$

Frequency domain

$$
V_{\text {out }}(\omega)=G(\omega) V_{\text {in }}(\omega)
$$

Where G is complex transfer function or gain.

Definition

$$
G(\omega)=\frac{V_{\text {out }}(\omega)}{V_{\text {in }}(\omega)}=|G(\omega)| e^{i \phi(\omega)}
$$

Often used values of G in dB

$$
d B=20 \log _{10}(|G(w)|)
$$

Simple example: RC low-pass filter

$$
G(\omega)=\frac{V_{\text {out }}(\omega)}{V_{i n}(\omega)}=\frac{\frac{1}{i \omega C}}{R+\frac{1}{i \omega C}}=\frac{1}{i \omega R C} \frac{1}{1+\frac{1}{i \omega R C}}=\frac{1}{1+i \omega R C}
$$

defining $\omega_{3 d B}=\frac{1}{R C}$

$$
G(\omega)=\frac{1}{1+i \frac{\omega}{\omega_{3 d B}}}=\frac{1}{\sqrt{1+\frac{\omega^{2}}{\omega_{3 d B}^{2}}}} e^{i \phi}, \phi=\operatorname{atan}\left(-\frac{\omega}{\omega_{3 d B}}\right)
$$

Note

$$
\left|G\left(\omega=\omega_{3 d B}\right)\right|=20 \log _{10}\left(\frac{1}{\sqrt{1+1}}\right)=20 \log _{10}\left(\frac{1}{\sqrt{2}}\right)=-3 d B
$$

RC low-pass filter at $\omega=.1 / R C$

Signal vs time

Lissajous plot

RC low-pass filter at $\omega=1 / R C$

Signal vs time

Lissajous plot

RC low-pass filter at $\omega=10 / R C$

Signal vs time

Lissajous plot

Bode plots

Definition

Bode plot: plots of magnitude and phase of the transfer function, where $|G|$ is often plotted in dB

RC high-pass filter

with $\omega_{3 d B}=\frac{1}{R C}$

RL filters

RL low-pass filter

$G(\omega)=\frac{R}{R+i \omega L}, \omega_{3 d B}=\frac{R}{L}$

RL high-pass filter

$$
G(\omega)=\frac{i \omega L}{R+i \omega L}
$$

Filters chain

Technically next stage loads the previous and it is quite hard to calculate total transfer function. However if we use rule of 10 to avoid overloading the previous filter. Every next stage resistor $R_{i+1}>10 R_{i}$ we can approximate

$$
G_{t}(\omega) \approx G_{1}(\omega) G_{2}(\omega) G_{3}(\omega) \cdots G_{n}(\omega)
$$

Example band pass filter

$$
\begin{aligned}
& G_{t}(\omega) \approx G_{1}(\omega) G_{2}(\omega) \\
& G_{t}(\omega) \approx \frac{\omega}{1+i \frac{\omega}{\omega_{13 a B}}} \frac{i \frac{\omega}{\omega_{23 d B}}}{1+i \frac{\omega}{\omega_{23 a B}}} \\
& \text { For } R_{1}=1 k \Omega, R_{2}=100 \mathrm{k} \Omega, \\
& C_{1}=C_{2}=.01 \mu F
\end{aligned}
$$

Notch filter - Band stop filter

It is impossible to make band stop filter with $G \approx 1$ outside of stop band with only simple combinations of low and high-pass filters. R, L, and C combo is required or a complicated network of R-C, R-L elements.

