
Sorting

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 27

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 1 / 18



Bubble sort method

Some one give us a vector of unsorted numbers.
We want to obtain the vector sorted in ascending order.

assign IndexOfTheLastToCheck be the index of
the vector end

1 start sweeping from the beginning of the vector
2 Compare the 2 consequent elements till we reach

the IndexOfTheLastToCheck
3 if the left element is larger we swap these 2 elements
4 move to the next pair to the right i.e. move to the

item 2
notice that at the end of the sweep the index of the
last element to check holds the largest element
so next sweep does not have to be that long.
it is shorter by one element
i.e. the index of the last element to check should be
decreased by 1

5 decrease IndexOfTheLastToCheck by 1
6 if IndexOfTheLastToCheck > 1 repeat from the

item 1

x = [3,1,4,5,2]
first sweep
x = [3̂,1,4,5,2] swap
x = [1,3,4,5,2] after swap
x = [1, 3̂,4,5,2] no swap
x = [1,3, 4̂,5,2] no swap
x = [1,3,4, 5̂,2] swap
x = [1,3,4,2,5] sweep done
new sweep
x = [1̂,3,4,2,5] no swap
x = [1, 3̂,4,2,5] no swap
x = [1,3, 4̂,2,5] swap
x = [1,3,2,4,5] sweep done
new sweep
x = [1̂,3,2,4,5] no swap
x = [1, 3̂,2,4,5] swap
x = [1,2,3,4,5] sweep done
last sweep
x = [1̂,2,3,4,5] no sweep
x = [1,2,3,4,5] sweep done

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 2 / 18



Bubble sort properties

This is the worst of all working algorithm!
The execution time of this algorithm is O(N2)

Never use it in the real life!
However it is very simple to program, and does not require extra
memory for execution.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 3 / 18



Quick sort method

Much better yet simple algorithm
Let’s discuss recursive realization
We will name our sorting function as qsort.

choose a pivot point value
let’s choose the pivot at the middle of the vector
pivotIndex=floor(N/2)
pivotValue=x(pivotIndex)

create two vectors which hold lesser and larger than pivotValue
elements of the input vector.
now concatenate the result of
xs=[qsort(lesser), pivotValue, qsort(larger)]
done

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 4 / 18



Quick sort summary

usually fast
typical execution time O(N log2 N)

but it is not guaranteed
However for certain input vectors execution time could be as long
as O(N2)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 5 / 18



Heap

Heap is a structure where parent element is larger or equal to its
children.

15

11 5

9 8

5 4 4 6

4 3

2

The top most element of the heap is called root.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 6 / 18



Heap sorting method

1 Fill the heap from the input vector elements
1 take the element and place it at the bottom of the heap
2 sift-up (bubble up) this element
3 do the same with the next element

2 remove the root element since it is the largest
3 rearrange the heap i.e. sift-down

1 take the last bottom element
2 place it at the root
3 check if parent is larger then children

1 find the largest child element
2 if the largest child is larger then parent swap them and repeat the

check

4 repeat step 2 until no elements left in the heap

Heap sorting complexity O(N log2 N)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 7 / 18



Filling (sift-up) the heap

Step 1
Place new element at the
bottom of the heap

15

11 5

9 8

5 4 4 6

4 3

2

6

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 8 / 18



Filling (sift-up) the heap

Step 2
Check if parent is larger
then child. If so swap them
and repeat step 2.

15

11 5

9 8

5 4 4 6

4 3

2 6

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 9 / 18



Filling (sift-up) the heap

Step 2
Check if parent is larger
then child. If so swap them
and repeat step 2.

15

11 5

9 8

5 4 4 6

6 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 10 / 18



Filling (sift-up) the heap

Step 2
Check if parent is larger
then child. If so swap them
and repeat step 2.

15

11 6

9 8

5 4 4 6

5 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 11 / 18



Removing from the heap (sift-down) the heap

Step 1
Remove the root element

15

11 6

9 8

5 4 4 6

5 3

2 4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 12 / 18



Removing from the heap (sift-down) the heap

Step 2
Place the last element of
the heap to the root

11 6

9 8

5 4 4 6

5 3

2 4

15

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 13 / 18



Removing from the heap (sift-down) the heap

Step 3
Check if parent is smaller
than the largest child. If so
swap and repeat step 3 else
go to step 1

11 6

9 8

5 4 4 6

5 3

2

15

4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 14 / 18



Removing from the heap (sift-down) the heap

Step 3
Check if parent is smaller
than the largest child. If so
swap and repeat step 3 else
go to step 1

4 6

9 8

5 4 4 6

5 3

2

15

11

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 15 / 18



Removing from the heap (sift-down) the heap

Sequence repeats

Step 1
Remove the root element

9 6

4 8

5 4 4 6

5 3

2

15

11

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 16 / 18



Vector heap representation

Heap nodes are numbered
consequently these
numbers represent the
node position in the vector.
notice that parent and
children have very simple
relationship

if parent node index is i
child 1 index is 2i
child 2 index is 2i + 1

if we know child index (i)
then

parent index is
floor(i/2)

15

11 5

9 8

5 4 4 6

4 3

2

1

2 3

4 5 6 7

8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

15 11 5 9 8 4 3 5 4 4 6 2

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 17 / 18



Matlab built in ’issorted’

Easy check if an array is sorted can be done with issorted which
returns true or false.

>> x=[1,2,3];
>> issorted(x)
ans =
1

issorted checks only for ascending order, for example

>> x=[3,2,1];
>> issorted(x)
ans =
0

Recall that ’0’ is equivalent of false in Matlab

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 18 / 18


	Bubble sort method
	Quick sort method
	Heap
	Heap sorting method
	Vector heap representation
	Matlab built in 'issorted'

