Eugeniy Mikhailov (W&M)

Sorting

Eugeniy E. Mikhailov

The College of William & Mary

L4

Lecture 27

Practical Computing Lecture 27 1/18

Bubble sort method

x=[3,1,4,5,2]
Some one give us a vector of unsorted numbers. first sweep
We want to obtain the vector sorted in ascending order. x = [3,1,4,5,2] swap

@ assign IndexOfTheLastToCheck be the indexof — x =[1,3,4,5,2] after swap

(1,
the vector end x=[1, 3 4,5,2] no swap
@ start sweeping from the beginning of the vector x=11,3,4,5,2 no swap
@ Compare the 2 consequent elements till we reach x=11,3,4,5,2] swap
the IndexOfTheLastToCheck x =[1,3,4,2,5] sweep done
@ if the left element is larger we swap these 2 elements new sweep
@ move to the next pair to the right i.e. move to the X = [1@1"27 5] no swap
item 2 X = [1,3,&3, 5] no swap

@ notice that at the end of the sweep the index of the x=[1,3,4,2,5] swap
last element to check holds the largest element x=[1,3,2,4,5] sweep done
@ s0 next sweep does not have to be that long. new sweep
e it is shorter by one element sy
o i.e. the index of the last element to check should be X = [1,3,2,4,5] no swap

decreased by 1 x =[1,3,2,4,5] swap
@ decrease IndexOfTheLastToCheck by 1 x =[1,2,3.4,5] sweep done
Q if TndexOfTheLast ToCheck > 1 repeat from the 12t sweep
item 1 x =11,2,3,4,5] no sweep

x =[1,2,3,4,5] sweep done

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 2/18

Bubble sort properties

@ This is the worst of all working algorithm!
@ The execution time of this algorithm is O(N?)
@ Never use it in the real life!

@ However it is very simple to program, and does not require extra
memory for execution.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 3/18

Quick sort method

Much better yet simple algorithm
Let’s discuss recursive realization
We will name our sorting function as gsort.

@ choose a pivot point value
o let's choose the pivot at the middle of the vector
o pivotindex=floor(N/2)
e pivotValue=x(pivotindex)

@ create two vectors which hold lesser and larger than pivotValue
elements of the input vector.

@ now concatenate the result of
xs=[gsort(lesser), pivotValue, gsort(larger)]

@ done

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 4/18

Quick sort summary

@ usually fast

@ typical execution time O(N log, N)
@ but it is not guaranteed

e However for certain input vectors execution time could be as long
as O(N?)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 5/18

Heap

Heap is a structure where parent element is larger or equal to its
children.

The top most element of the heap is called root.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 6/18

Heap sorting method

@ Fill the heap from the input vector elements
@ take the element and place it at the bottom of the heap
@ sift-up (bubble up) this element
© do the same with the next element

@ remove the root element since it is the largest

© rearrange the heap i.e. sift-down

@ take the last bottom element

@ place it at the root
© check if parent is larger then children

@ find the largest child element
@ if the largest child is larger then parent swap them and repeat the
check

© repeat step 2 until no elements left in the heap

Heap sorting complexity O(Nlog, N)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 7/18

Filling (sift-up) the heap

Place new element at the
bottom of the heap

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27

Filling (sift-up) the heap

Check if parent is larger
then child. If so swap them

and repeat step 2.
(1) ()

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 9/18

Filling (sift-up) the heap

Check if parent is larger
then child. If so swap them
and repeat step 2.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 10/18

Filling (sift-up) the heap

Check if parent is larger
then child. If so swap them
and repeat step 2.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 11/18

Removing from the heap (sift-down) the heap

_IIIIIIIIIII/I/H
Remove the root element

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 12/18

Removing from the heap (sift-down) the heap

Place the last element of
the heap to the root

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 13/18

Removing from the heap (sift-down) the heap

Check if parent is smaller
than the largest child. If so
swap and repeat step 3 else

go to step 1 e

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 14/18

Removing from the heap (sift-down) the heap

Check if parent is smaller Q
than the largest child. If so
swap and repeat step 3 else

go to step 1 e

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 15/18

Removing from the heap (sift-down) the heap

Sequence repeats

_IIIIIIIIIIMM
Remove the root element Q

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 16/18

Vector heap representation

@ Heap nodes are numbered
consequently these : "

4 5

11

numbers represent the
node position in the vector.
@ notice that parent and
children have very simple
relationship
o if parent node index is i
@ child 1 index is 2/
@ child 2 index is 2/ + 1
o if we know child index (/)
then
@ parent index is
floor(i/2)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 17/18

Matlab built in ’issorted’

Easy check if an array is sorted can be done with i ssorted which
returns true or false

>> x=[1,2,3];
>> issorted (x)
ans =

1

issorted checks only for ascending order, for example

>> x=[3,2,1];
>> issorted (x)
ans =

0

Recall that ’0’ is equivalent of false in Matlab

Eugeniy Mikhailov (W&M) Practical Computing Lecture 27 18/18

	Bubble sort method
	Quick sort method
	Heap
	Heap sorting method
	Vector heap representation
	Matlab built in 'issorted'

