Fourier transform

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 23

▲ 同 ト ▲ 三 ト

Fourier series

Any periodic single value function

y(t)=y(t+T)

with finite number of discontinues and for which $\int_0^T |f(t)| dt$ is finite can be presented as

$$y(t) = \frac{a_0}{2} + \sum_{1}^{\infty} \left(a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t) \right)$$

T period

 ω_1 fundamental frequency $2\pi/T$

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{2}{T} \int_0^T dt \begin{pmatrix} \cos(n\omega_1 t) \\ \sin(n\omega_1 t) \end{pmatrix} y(t)$$

At discontinuities series approach the mid point

Eugeniy Mikhailov (W&M)

Fourier series example: |t|

$$\mathbf{y}(t) = |t|, \ -\mathbf{p}\mathbf{i} < t < \mathbf{p}\mathbf{i}$$

Since function is even all $b_n = 0$

$$\left\{egin{aligned} &a_0=\pi,\ &a_n=0,\ &n ext{ is even}\ &a_n=-rac{4}{\pi n^2},\ &n ext{ is odd} \end{aligned}
ight.$$

イロト イポト イヨト イヨト

Fourier series example: step function

$$egin{cases} {0, & -\pi < x < 0,} {1, & 0 < x < \pi} \end{cases}$$

Since function is odd all $a_n = 0$ except $a_0 = 1$

$$egin{cases} b_n = 0, & n ext{ is even} \ b_n = rac{2}{\pi n}, & n ext{ is odd} \end{cases}$$

< 口 > < 同

Complex representation

Recall that

$$\exp(i\omega t) = \cos(\omega t) + i\sin(\omega t)$$

It can be shown that

$$y(t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_1 t)$$
$$c_n = \frac{1}{T} \int_0^T y(t) \exp(-i\omega_1 nt) dt$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

Eugeniy Mikhailov (W&M)

イロト イポト イヨト イヨ

What to do if function is not periodic?

- $T \to \infty$
- $\sum \rightarrow \int$
- $\bullet \ \ \text{discrete spectrum} \rightarrow \text{continuous spectrum}$

• $C_n \rightarrow C_\omega$

$$egin{aligned} y(t) &=& rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}c_{\omega}\exp(i\omega t)d\omega\ c_{\omega} &=& rac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}y(t)\exp(-i\omega t)dt \end{aligned}$$

Required: $\int_{-\infty}^{\infty} dt y(t)$ exist and finite notice: rescaling of c_{ω} compared to c_n by extra $\sqrt{2\pi}$ and T is gone.

Discrete Fourier transform (DFT)

In reality we cannot have

- infinitively large interval
- infinite amount of points to calculate true integral

Assuming that y(t) has a period T and we took N equidistant points

$$\Delta t = \frac{T}{N} \text{ samples spacing, } f_s = \frac{1}{\Delta t} \text{ sampling rate}$$

$$f_1 = \frac{1}{T} = \frac{1}{N\Delta t} \text{ smallest observed frequency,}$$

also resolution bandwidth

$$t_k = \Delta t \times (k-1)$$

 $y(t_{k+N}) = y(t_k)$ periodicity condition
 $y_k = y(t_k)$ shortcut notation
 $y_1, y_2, y_3, \dots, y_N$ data set

We replace integral in Fourier series with the sum, and

Eugeniy Mikhailov (W&M)

$$y_{k} = \frac{1}{N} \sum_{n=0}^{N-1} c_{n} \exp(i\frac{2\pi(k-1)n}{N}) \text{ inverse Fourier transform}$$

$$c_{n} = \sum_{k=1}^{N} y_{k} \exp(-i\frac{2\pi(k-1)n}{N}) \text{ Fourier transform}$$

$$n = 0, 1, 2, \cdots, N-1$$

Confusion keep increasing: where are the negative coefficients c_{-n} ? In DFT they moved to the right end of the c_n vector :

$$c_{-n} = c_{N-n}$$

Eugeniy Mikhailov (W&M)

< 🗇 🕨 < 🖃 🕨

Fast numerical realization of DFT is FFT. This is just smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points (y_k)
- c=fft (y) Fourier transform
- y=ifft (c) inverse Fourier transform

Notice that fft does not normalize by *N* so to get Fourier series c_n you need to calculate fft (y) /N. However y = ifft (fft (y))

Notice one more point of confusion: Matlab does not have index=0, so actual $c_n = c_{matlab}$ fft(n-1), so $c_0 = c_{matlab}$ fft(1)