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Fourier series

Any periodic single value function

with finite number of discontinues and
for which f” |f(t)|d is finite can be
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At discontinuities series approach the mid point
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Fourier series example: [t|
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Fourier series with 1 terms
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Fourier series example: step function

Eugeniy Mikhailov (W&M)

0, —m<x<0, 08
1, O<x<m
0.6
Since function is odd all a, =0 04
except ap = 1
b, =0, n iseven
by=2, nisodd

Fourier series with 1 terms
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b coefficients

Fourier series with 10 terms
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Fourier series with 100 terms
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Complex representation

Notes
Recall that

exp(iwt) = cos(wt) + isin(wt)

It can be shown that

y(t)y = > coexp(inut)

n=—o0

Cn

T
l/ y(t) exp(—iwq nt)dt
T Jo

ah = Ch+C_p

by = i(ch—c_p)
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What to do if function is not periodic?

Notes
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@ discrete spectrum — continuous spectrum
e Cch— Gy

y() = \/%/jo c. exp(iwt)dw

e = \/%7 1 Z Y(t) exp(—iwt)olt

Required: [7_dt y(t) exist and finite
notice: rescaling of c,, compared to ¢, by extra v27 and T is gone.
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nsform (DFT)

Discrete Fourier tr.

In reality we cannot have Notes

@ infinitively large interval

@ infinite amount of points to calculate true integral
Assuming that y(t) has a period T and we took N equidistant points

. 1 .
At = samples spacing, fs = — sampling rate

At

-2/

1
fi = T = NAP smallest observed frequency,

also resolution bandwidth
tk = Atx(k—1)

Y(tn) y(t) periodicity condition

Yk = Yy(t) shortcut notation
Y1, Y2, Y3, s YN data set

We replace integral in Fourier series with the sum
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DFT

Notes
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Confusion keep increasing: where are the negative coefficients c_, ?

In DFT they moved to the right end of the ¢, vector :

C_n=CN-n
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Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just smart way to do
DFT. Matlab has one built in

@ y is a matlab vector of data points (yx)
@ c=fft (y) Fourier transform
@ y=ifft (c) inverse Fourier transform

Notice that £ £t does not normalize by N so to get Fourier series ¢,
you need to calculate ££t (y) /N.

Howevery = ifft ( fft(y) )

Notice one more point of confusion: Matlab does not have index=0, so
actual ¢, = Cratiab (N — 1), SO Co = Cratiab (1)
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