Fourier transform

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 23

 $y(t) = \frac{a_0}{2} + \sum_{1}^{\infty} \left(a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t) \right)$

T period

. fundamental frequency $2\pi/T$

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{2}{T} \int_0^T dt \begin{pmatrix} \cos(n\omega_1 t) \\ \sin(n\omega_1 t) \end{pmatrix} y(t)$$

y(t) = |t|, -pi < t < pi

Since function is even all $b_n = 0$

Eugeniy Mikhailov (W&M) Practical Computing Lecture 23

Fourier series example: etem function

$$\begin{cases} 0, & -\pi < x < 0, \\ 1, & 0 < x < \pi \end{cases}$$

Since function is odd all $a_n = 0$ except $a_0 = 1$

eniy Mikhailoy (W&M) Practical Compu

4/9

N	0	te:

Notes		
Notes		
Notes		

Complex representation

Recall that

$$\exp(i\omega t) = \cos(\omega t) + i\sin(\omega t)$$

It can be shown that

$$y(t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_1 t)$$

$$c_n = \frac{1}{7} \int_0^T y(t) \exp(-i\omega_1 n t) dt$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

Notes

What to do if function is not periodic?

- $T \to \infty$
- $\sum \rightarrow \int$
- discrete spectrum → continuous spectrum
 - $c_n \rightarrow c_\omega$

$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} c_{\omega} \exp(i\omega t) d\omega$$

$$c_{\omega} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y(t) \exp(-i\omega t) dt$$

Required: $\int_{-\infty}^{\infty} dt \ y(t)$ exist and finite

notice: rescaling of c_{ω} compared to c_n by extra $\sqrt{2\pi}$ and T is gone.

Discrete Fourier transform (DFT)

In reality we cannot have

- infinitively large interval
- infinite amount of points to calculate true integral

Assuming that y(t) has a period T and we took N equidistant points

$$\Delta t = \frac{T}{N}$$
 samples spacing, $f_s = \frac{1}{\Delta t}$ sampling rate $f_1 = \frac{1}{T} = \frac{1}{N\Delta t}$ smallest observed frequency, also resolution bandwidth $t_k = \Delta t \times (k-1)$

$$y(t_{k+N}) = y(t_k)$$
 periodicity condition
 $y_k = y(t_k)$ shortcut notation

data set $\textit{y}_1,\textit{y}_2,\textit{y}_3,\cdots,\textit{y}_N$

We replace integral in Fourier series with the sum

DFT

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i\frac{2\pi(k-1)n}{N}) \text{ inverse Fourier transform}$$

$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N}) \text{ Fourier transform}$$

$$n = 0, 1, 2, \dots, N-1$$

Confusion keep increasing: where are the negative coefficients c_{-n} ? In DFT they moved to the right end of the c_n vector :

$$c_{-n}=c_{N-n}$$

Notes Notes

Notes

Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points (y_k)
- c=fft (y) Fourier transform
- y=ifft (c) inverse Fourier transform

Notice that fft does not normalize by $\it N$ so to get Fourier series $\it c_n$ you need to calculate fft (y) /N.

However y = ifft(fft(y))

Notice one more point of confusion: Matlab does not have index=0, so actual $c_n = c_{matlab\ fft}(n-1)$, so $c_0 = c_{matlab\ fft}(1)$

←□→ ←□→ ← ≥ → ← ≥ → へへ

Eugeniy Mikhailov (W&M) Practical Computing Lecture 23 9 / 9

Notes				
				_
Notes				
Notes				
Notes				
	 · · · · · ·	· · · · · ·	 	