Ordinary Differential equations continued

Eugeniy E. Mikhailov

The College of William & Mary

W

Lecture 20

Eugeniy Mikhailov (W&M) Practical Computing Lecture 20 1/5

Recall Euler's method

V' =f(x.y)

There is an exact way to write the solution
X —
yox) = [fxg)ax
Xo
However for small interval of x, x + h we assume that 7(x,) is constant

—

Y(Xiy1) = Y(Xi + h) = y(x;) + f(xi, ¥i)h + O(h)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 20 2/5

The second-order Runge-Kutta method

Using multi-variable calculus and Taylor expansion, it can be shown

Y(Xip1) = y(xi+h) =

= Y(x;) + Cof(xi,¥;)h + C1f(x; + ph, ¥i + qhf(x;, ¥i))h + O(h*)
When

Co+C1 :1, C1p:1/2, C1q:1/2

There is a lot of possible choices of parameters Cy, Cq, p, and g which
has no advantage over the others.

One of popular choicesis Cp =0, Cy =1, p=1/2,and g = 1/2 for

Modified Euler’s method or midpoint method (error O(h?))

ki = hf(x.5)
ko = h?(X,'—i-ﬁ }7,~+1k1)
2’ 2
y(xi+h) = yithk

Eugeniy Mikhailov (W&M) Practical Computing Lecture 20 3/5

The forth-order Runge-Kutta method

truncation error O(h°)

ki = hf(x,7))
h _
k2 = hf(X/ 7yl + k1)
h
k3 = hf(X/ ayl + k2)
k4 = hf(X,‘ I h, Vi+ kg)
- L1
y(xi+h) = y+ é(/ﬁ + 2kp + 2k3 + kyq)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 20 4/5

Matlab ODEs solvers

Have a look in help files for ODEs in particular

@ ode45 - adaptive explicit 4th order Runge-Kutta method (good
default method)

@ ode23 - adaptive explicit 2nd order Runge-Kutta method
@ odel13 - “stiff” problem solver
@ and others

Adaptive stands for no need to chose '/, algorithm will do it by itself.
But do remember the rule of not trusting computers.
Also run odeexamples to see some of the demos for ODEs solvers

Eugeniy Mikhailov (W&M) Practical Computing Lecture 20 5145]

	The second-order Runge-Kutta method (RK2)
	The forth-order Runge-Kutta method (RK4)
	Matlab functions for ODEs

