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ODE definitions

An ordinary equation of order n has the following form

y (n) = f (x , y , y ′, y ′′, · · · , y (n−1))

x independent variable
y (i) the ith derivative of y(x)

f often called the force term
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First order ODE example

Example
the acceleration of the body is the first derivative of velocity with
respect to the time and equals to the force divided by mass

a(t) =
dv
dt

= v ′(t) =
F
m

t → x independent variable
v → y

F/m → f
And we obtain the canonical form

y (1) = f (x , y)

for the first order ODE
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nth order ODE transformation to the system of first
order ODE

y (n) = f (x , y , y ′, y ′′, · · · , y (n−1))

we define the following variables

y1 = y , y2 = y ′, y3 = y ′′, · · · , yn = y (n−1)



y ′1
y ′2
y ′3
...

y ′n−1
y ′n


=



f1
f2
f3
...

fn−1
fn


=



y2
y3
y4
...

yn
f (x , y1, y2, y3, · · · yn)


So we can rewrite nth order ODE as a system of first order ODE

~y ′ = ~f (x , ~y)
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Cauchy boundary conditions

~y ′ = ~f (x , ~y)

This is the system of n equations and thus requires n constrains.

With Cauchy boundary conditions we specify ~y(x0) = ~y0
i.e. initial conditions


y1(x0)
y2(x0)
y3(x0)

...
yn(x0)

 =


y10

y20

y30
...

yn0

 =


y0
y ′0
y ′′0
...

y (n−1)
0


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Problem example

If acceleration of the particle is given and constant find the position as
a function of time.
We are solving

x ′′(t) = a

First we need to convert it to canonical form of system of first order
ODEs.

t → x time as independent variable
x → y → y1 particle position
v → y ′ → y2 velocity
a → f acceleration as a force term

so

x ′′ = a→ y ′′ = f → ~y ′ = ~f (x , ~y)→
(

y ′1
y ′2

)
=

(
y2
f

)
We also need initial conditions:
initial position x0 → y10 and velocity v0 → y20
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Euler’s method

Let’s for simplicity consider simple first order ODE (notice lack of
vector)

y ′ = f (x , y)

There is an exact way to write the soltion

y(xf ) =

∫ xf

x0

f (x , y)dx

The problem is that f (x , y) depends on y itself. However for small
interval of x , x + h we can assume that f (x , y) is constant
Then we get familiar box integration formula or in application to ODE
the Euler’s method.

y(x + h)− y(h) =
∫ x+h

x
f (x , y)dx ≈ f (x ,h)h
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Euler’s method continued

y(x + h) = y(x) + f (x , y)h

All we need is to split our interval on bunch of steps of size h, and leap
frog from the first x0 to the next one x0 + h, then x0 + 2h and so on.
Now we can make an easy transformation to the vector case (i.e. nth
order ODE)

~y(x + h) = ~y(x) +~f (x , y)h

Note: similarly to the boxes integration method
Euler’s method is very imprecise for the given h
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Stability issue

Let’s have a look at the first oder ODE

y ′ = 3y − 4e−x

It has the following solution

y = Ce3x + e−x

If our initial condition y(0) = 1 the solution is y(x) = e−x .
Please run ode_unstable_example.m and have a look at the output of
the numerical solution
Clearly it’s diverges from the analytical solutions. The problem is in
round off errors which is the same as to say that y(0) = 1 + δ then
C 6= 0 and solution diverges.
Do nut trust the numerical solutions (regardless of the method) without
proper consideration!
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