
Data reduction and fitting

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 15

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 1 / 9



Data reduction

Typical modern experiment generates Mega bytes or even Terra
bytes of data.
there is no way for a human to comprehend such enormous
amount of data

we need to post-process it and extract some important parameters
alternatively we want to check how our models reflect reality

x

y

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 2 / 9



Data reduction

Typical modern experiment generates Mega bytes or even Terra
bytes of data.
there is no way for a human to comprehend such enormous
amount of data

we need to post-process it and extract some important parameters
alternatively we want to check how our models reflect reality

x

y

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 2 / 9



Fitting

Someone measured bunch of experimental points y as a function of
independent variable x . We want to extract model parameters ~p via
fitting of the model function f (x , ~p).

Remark: in general x and y could be vectors i.e. multi-dimensional, for
example ~x has 2 coordinates: speed of the car and the weight of the
load, and y would have the fuel consumption and the engine
temperature.

For simplicity we will focus on the one dimensional case for x and y

we are given experimental points xi → yi

our model function f (xi , ~p): xi → yfi

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 3 / 9



Goodness of the fit

First we need to define some way to
estimate goodness of the fit.

Very common is to use the sum of the
squares of the fit deviations from the
experiment data points.

χ2 =
∑

i

(yi − yfi )
2

x

y

Xi

y
i

y
f i

Differences of (yi − yfi ) are called residuals

For a given sets {xi}, {yi} and f the goodness of the fit χ2 depends
only on parameters ~p of the model/fit function

Our job is simple: find optimal ~p which minimizes χ2 using any suitable
algorithm. I.e. perform so called the least square fit.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 4 / 9



Good fit should have the following properties

residuals should be randomly scattered around 0
i.e. no visible trends of residuals vs x

standard deviation or RMS residual =
√

1
N
∑N

i (yi − yfi )
2 should

be in order of the ∆y (experimental uncertainty for y )
the above condition is often overlooked but you should keep your
eyes on it.
with enough fitting parameters you can make zero residuals fit but
this is unphysical since all your data has uncertainties if the
measurements
beside such fits are usually useless since any new data point
usually leads to drastic modifications of the fit parameters.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 5 / 9



Estimation of uncertainty for parameters

∆pi could be estimated by change of the χ2,
∆pi : χ2(p1,p2,p3, . . .pi + ∆pi , . . .) = 2χ2(p1,p2,p3, . . .pi , . . .)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 6 / 9



Practical realization

Have a look at ’fitter.m’ where optimization of χ2 is done with
fminsearch matlab function.
See ’fitter_usage_example.m’ for a particular usage example.

f (x , ~p) =
A

1 +
(

x−xo
γ

)2

~p = [A, xo, γ] =
[9.9444,1.9936,2.0354]

−30 −20 −10 0 10 20 30
−2

0

2

4

6

8

10

x

y

 

 

−30 −20 −10 0 10 20 30
−0.5

0

0.5

x

re
s
id

u
a

ls

 

 

data

fit

residuals

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 7 / 9



Matlab built-ins

see fit from the Matlab curve fitting toolbox
more cumbersome to start using
provides parameters uncertainties

see lsqcurvefit from the Matlab optimization toolbox

They are faster since they take an assumption that merit function is
quadratic.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 8 / 9



Matlab built-in fit usage example
%% built in fit function usage example

% load initial data file
data=load(’data_to_fit.dat’);
x=data(:,1); % 1st column is x
y=data(:,2); % 2nd column is y

% define fitting function
% notice that it quite human readable
% Matlab automatically treat x as independent variable
f=fittype(@(A,x0,gamma, x) A ./ (1 +((x-x0)/gamma).^2) )

% let’s see did Matlab guessed fit parameters right
coeffs = coeffnames(f)

% assign initial guess
pin=[3,3,1]; % [A, x0, gamma]

% We fit our data here
[fitobject,gof] = fit (x,y, f, ’StartPoint’, pin)

disp(’confidence interval/errorbars for A, x0, and gamma’);
ci = confint(fitobject)

builtin_fit_check(x,y, fitobject);

Eugeniy Mikhailov (W&M) Practical Computing Lecture 15 9 / 9


	Goodness of the fit
	Parameter uncertainty estimations
	Homemade implementation of the fitter
	Matlab built-ins

